Haemodynamic and metabolic adaptations in coronary microvascular disease.
Samer Noaman; David M Kaye; Shane Nanayakkara; Anthony M Dart; Andy S C Yong; Martin Ng; Donna Vizi; Stephen J Duffy; Nicholas Cox; William Chan
Abstract
We aimed to evaluate the microcirculatory resistance (MR) and myocardial metabolic adaptations at rest and in response to increased cardiac workload in patients with suspected coronary microvascular dysfunction (CMD).Patients with objective ischaemia and/or myocardial injury and non-obstructive coronary artery disease underwent thermodilution-derived microcirculatory assessment and transcardiac blood sampling during graded exercise with adenosine-mediated hyperaemia. We measured MR at rest and following supine cycle ergometry. Patients (n=24) were stratified by the resting index of MR (IMR) into normal-IMR (IMR<22U, n=12) and high-IMR groups (IMR≥22U, n=12).The mean age was 57 years; 67% were males and 38% had hypertension. The normal-IMR group had increased IMR response to exercise (16±5 vs 23±12U, p=0.03) compared with the high-IMR group, who had persistently elevated IMR at rest and following exercise (38±19 vs 33±15U, p=0.39) despite similar exercise duration and rate-pressure product between the groups, both p>0.05. The normal-IMR group had augmented oxygen extraction ratio following exercise (53±18 vs 64±11%, p=0.03) compared with the high-IMR group (65±14 vs 59±11%, p=0.26). The postexercise lactate uptake was greater in the high-IMR (0.04±0.05 vs 0.11±0.07 mmol/L, p=0.004) compared with normal-IMR group (0.08±0.06 vs 0.09±0.09 mmol/L, p=0.67). The high-IMR group demonstrated greater troponin release following exercise compared with the normal-IMR group (0.13±0.12 vs 0.001±0.05 ng/L, p=0.03).Patients with suspected CMD appear to have distinctive microcirculatory resistive and myocardial metabolic profiles at rest and in response to exercise. These differences in phenotypes may permit individualised therapies targeting microvascular responsiveness (normal-IMR group) and/or myocardial metabolic adaptations (normal-IMR and high-IMR groups).
Journal | HEART (BRITISH CARDIAC SOCIETY) |
ISSN | 1468-201X |
Published | 17 Mar 2023 |
Volume | |
Issue | |
Pages | |
DOI | 10.1136/heartjnl-2022-322156 |
Type | Journal Article |
Sponsorship |