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ABSTRACT: 

Background: Advances in mass spectrometry and lipidomics techniques are providing new 

insights into the role of lipid metabolism in obesity-related diseases. However, human lipidomic 

studies have been inconsistent, owing to the use of indirect proxy measures of metabolic 

outcomes and relatively limited coverage of the lipidome. Here, we employed comprehensive 

lipid profiling and gold-standard metabolic measures to test the hypothesis that distinct lipid 

signatures in obesity may signify early stages of pathogenesis toward type 2 diabetes.  

Methods: Using high-performance liquid chromatography-electrospray tandem mass 

spectrometry, we profiled >450 lipid species across 26 classes in 65 overweight or obese non-

diabetic individuals. Intensive metabolic testing was conducted using direct gold-standard 

measures of adiposity (% body fat by dual X-ray absorptiometry), insulin sensitivity 

(hyperinsulinaemic-euglycaemic clamps), and insulin secretion (intravenous glucose tolerance 

tests), as well as measurement of serum inflammatory cytokines and adipokines (multiplex 

assays; flow cytometry). Univariable and multivariable linear regression models were 

computed using Matlab R2011a, and all analyses were corrected for multiple testing using the 

Benjamini-Hochberg method. 

Results: We present new evidence showing a strong and independent positive correlation 

between the lysophosphatidylinositol (LPI) lipid class and insulin secretion in vivo in humans 

(β [95%CI]= 781.9 [353.3, 1210.4], p=0.01), supporting the insulinotropic effects of LPI 

demonstrated in mouse islets. Dihydroceramide, a sphingolipid precursor, was independently 

and negatively correlated with insulin sensitivity (β [95%CI]= -1.9 [-2.9, -0.9], p=0.01), 

indicating a possible upregulation in sphingolipid synthesis in obese individuals. These 

associations remained significant in multivariable models adjusted for age, sex, and % body fat. 

The dihexosylceramide class correlated positively with interleukin-10 before and after 

adjustment for age, sex, and % body fat (p=0.02), while the phosphatidylethanolamine class 

and its vinyl ether-linked (plasmalogen) derivatives correlated negatively with % body fat in 

both univariable and age- and sex- adjusted models (all p<0.04). 

Conclusions: Our data suggest that these lipid classes may signify early pathogenesis toward 

type 2 diabetes and could serve as novel therapeutic targets or biomarkers for diabetes 

prevention.  

Keywords: Lipid metabolism, lipidomics, diabetes, insulin secretion, metabolic dysfunction, 

obesity. 

ABBREVIATIONS: AUC, area under the curve; BH, Benjamini-Hochberg; DG, 

diacylglycerol; GPR-55, G-protein coupled receptor-55; HOMA- IR, homeostatic model 

assessment of insulin resistance; hsCRP, high-sensitivity C-reactive protein, IQR, interquartile 

range; LPI, lysophosphatidylinositol; MCP-1, monocyte chemoattractant protein-1; PE, 

phosphatidylethanolamine; RCT, randomized controlled trial; TG, triacylglycerol.  
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1. INTRODUCTION 

Lifestyle changes including the Westernization of diet, reduced physical activity, and 

sedentary living and work environments have contributed to the rapid propagation of metabolic 

disorders, namely obesity and type 2 diabetes [1]. Insulin resistance is a central feature of these 

conditions, yet the etiological mechanisms responsible for the development of insulin 

resistance in obesity are not fully understood. Compelling evidence suggests that defective 

lipid metabolism resulting from over-nutrition and/or impaired adipocyte lipolysis may 

contribute to muscle and liver insulin resistance, in part by promoting intracellular 

accumulation of lipids which impair insulin signal transduction [2]. However, conventional 

lipid profiling of triglycerides and total, high-, and low-density lipoprotein cholesterol, while 

useful, provides only a narrow snapshot of the dynamic processes of lipid metabolism, 

particularly in complex metabolic disorders. 

In contrast, rapidly developing lipidomics mass spectrometry techniques are now able to 

sensitively, comprehensively, and simultaneously quantify hundreds of lipid species to provide 

a more global assessment of lipid metabolism [3]. With the advancement of these techniques, 

it has become apparent that dyslipidaemia in obesity extends beyond free fatty acids and, 

indeed, a number of plasma lipids have been identified as potential mediators of insulin 

resistance and inflammation. Human observational studies have revealed variations in 

ceramides, triacylglycerols, and ether phospholipids in individuals with general or abdominal 

obesity [4-6]. Lysophosphatidylinositol has been linked to impaired insulin secretion in animal 

studies [7], while sphingomyelin has been associated with insulin secretion in humans [8]. 

Sphingolipids, despite being a relatively minor component of the lipid milieu in most tissues, 

are proposed to be among the most pathogenic lipids in the sequelae associated with obesity. 

Ceramides in particular have been studied extensively and are implicated as major contributors 

to systemic and skeletal muscle insulin resistance [9-11], although the latter remains an area of 
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debate [12-14]. Circulating factors associated with obesity such as inflammatory cytokines 

have also been shown to selectively up-regulate sphingolipid biosynthesis, amplifying the 

effect of lipid oversupply [15], while adipokines such as adiponectin or leptin can prevent 

lipotoxicity in peripheral tissues [16, 17].  

Despite an increasing number of human lipidomic studies, results remain inconsistent 

owing to differences in study populations, small sample sizes (n<30), varying degrees of 

methodological rigour, limited coverage of the lipidome (<200 species), and/or use of indirect 

proxy measures such as body mass index (BMI) and homeostatic model assessment of insulin 

resistance (HOMA-IR). Here, we aim to explore the relationship between the plasma lipidome 

and metabolic risk factors using direct gold-standard measures of adiposity, insulin sensitivity, 

and insulin secretion, in addition to comprehensive lipidomic profiling (>450 species) and 

measurement of inflammatory cytokines and adipokines. We test the hypothesis that distinct 

lipid metabolites will be associated with metabolic risk factors in overweight or obese 

individuals and may signify early stages of pathogenesis toward type 2 diabetes. 

2.  METHODS: 

2.1. Study Population 

This study is a cross-sectional analysis of baseline data from a previous randomized 

controlled trial (RCT) and a detailed protocol has been published [18]. Briefly, 65 participants 

were recruited from the local community in Melbourne, Australia, via print and online 

advertisements. Participants were aged 18-60 years, overweight or obese (BMI ≥ 25 kg/m2), 

and otherwise generally healthy on medical screening. Exclusion criteria included use of 

medications, vitamins, or supplements; smoking or high alcohol use (>4 and >2 standard 

drinks/week for men and women, respectively); major diseases including any diabetes (type 1 

or 2), known or newly diagnosed based on a 75g oral glucose tolerance test (OGTT) and World 
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Health Organization (WHO) criteria [19], or presence of acute inflammation. Pregnant, 

lactating, or peri- or post-menopausal women were excluded. The study was conducted 

according to the principles of the Declaration of Helsinki [20] and received ethical approval 

from the Monash University Human Research Ethics Committee (Protocol ID: CF13/3874-

2013001988). All participants provided written informed consent prior to study entry. 

2.2. Data Collection and Outcome Measures 

Detailed descriptions of data collection and outcome measures are reported in our 

published protocol [18]. Briefly, participants who were eligible on phone screening attended a 

medical review which included a detailed physical examination and medical history, routine 

blood analyses, anthropometric assessments, and 75g OGTTs to exclude diabetes.  

2.2.1. Anthropometric Measurements  

Total % body fat was measured using the gold-standard dual-energy X-ray absorptiometry 

(DPX-L; Lunar Radiation, Madison, WI). BMI was calculated from weight (kg)/ height (m)2, 

and waist and hip circumferences were used to establish the waist-to-hip ratio (WHR) as an 

additional index for body fat distribution (waist (cm)/ hip (cm)= WHR).  

2.2.2. Glycaemic Measurements 

 Glucose tolerance was measured after a 12-hour overnight fast using 75g OGTTs and 

WHO criteria [19], and plasma glucose concentrations were determined at real-time using the 

glucose oxidase method (YSI 2300 STAT, YSI Inc., OH, USA). Insulin sensitivity was 

assessed using the gold-standard hyperinsulinaemic-euglycaemic clamp. This was initiated by 

intravenous bolus injection of insulin (9 mU/kg), after which insulin was constantly infused 

(40 mU.m-2.min) for at least 120 min, while glucose was variably infused, monitored every 5 

minutes, and adjusted to maintain euglycaemia (constant 5 mmol/L value for the last 30 

minutes). Insulin sensitivity (M-value) was defined as the weight-adjusted glucose infusion 
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rate during the last 30 minutes when a steady state was achieved. Acute insulin secretion was 

measured using intravenous glucose tolerance tests, where 50 ml of 50 % glucose was delivered 

intravenously over a 3 min period and insulin and glucose concentrations were measured at 3, 

4, 5, 6, 8, 10, 15, 20, 25, and 30 min to determine insulin secretory response. Plasma insulin 

area under the concentration-time curve (AUC) was determined using the trapezoidal rule [21] 

and was calculated from 3-5, 10-30, and 0-30 minutes after the glucose bolus to determine first-

phase, second-phase, and total insulin secretion, respectively. 

2.2.3. Biochemical Analyses 

Fasting venous blood samples were drawn using standard phlebotomy techniques, 

centrifuged immediately, and stored at -80°C until analysis. All blood samples were analyzed 

under blinded conditions using standard quality control systems (all results within ± 2 SD) by 

accredited laboratories. Insulin was measured by simultaneous immunoenzymatic sandwich 

assays (Access/DXI ultrasensitive insulin assay, Beckman Coulter [BC], Australia), with inter- 

and intra- assay CVs of <5% and <7%, respectively. Plasma high sensitivity C-reactive protein 

(hsCRP) was measured by highly sensitive near-infrared particle immunoassays on Synchron 

LX analyzers (BC, Australia) according to manufacturer’s instructions, and inter- and intra-

assay CVs were <3% and <5%, respectively.  

Serum inflammatory markers and adipokines were measured using bead-based multi-

analyte assays (LEGENDplex™, Biolegend, CA), and data acquisition was performed using 

LSRII flow cytometers and FACS DIVA software (Becton Dickinson™, San Diego, CA), as 

per manufacturer’s instructions. These panels simultaneously quantified multiple 

cytokines/chemokines including tumor necrosis factor-alpha (TNF-α), monocyte 

chemoattractant protein-1 (MCP-1), interleukin (IL)-1β, IL-6, IL-8, and IL-10, as well as 

adipokines adiponectin, leptin, resistin, and adipsin. All analytes had inter- and intra-assay CVs 

<8% and <9%, respectively. 
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2.2.4. Lipidomics Analyses 

Targeted lipidomics analysis was conducted as described elsewhere [22] and detailed 

development of this methodology with structural identification is published [23]. Briefly, 

plasma samples (10 µL) were extracted in a single-phase extraction with 20 volumes of 

CHCl3:MeOH (2:1) and 10 µL of an internal standard mix containing between 50 and 1000 

pmol each of 23 non-physiologic or stable isotope-labelled lipid standards. Lipid analysis was 

performed using high-performance liquid chromatography electrospray ionization on an AB 

Sciex 4000 Q/TRAP mass spectrometer. Liquid chromatography was performed on a Zorbax 

Eclipse Plus C18 (Agilent Technologies, USA), 1.8 um, 100 x 2.1 mm column, using solvents 

A and B consisting of water:acetonitrile:isopropanol, 50:30:20 and 1:9:90 respectively, both 

containing 10mM ammonium formate. The column was heated to 60°C and the auto sampler 

regulated to 25°C. Lipid extracts (5 ul) were injected and separated under gradient conditions 

with a flow rate of 400 ul/min: 10% B to 55% B over 3 minutes; increased to 70% B over 8 

minutes; increased to 87% B over 0.1 minutes; increased to 92% B over 5.2 minutes; increased 

to 100% B over 0.1 minutes; and held at 100% B for 0.3 minutes. The solvent was then 

decreased to 10% B over 0.1 and held at 10% B for 4.2 minutes until the next injection at 21 

minutes. The first 1.5 minutes and final 0.9 minutes of each analytical run were diverted to 

waste. 

A total of 489 lipid species across 26 classes were measured using scheduled multiple 

reaction monitoring. Results from chromatographic data were analysed using MultiQuant 2.1.1 

(Sciex, Australia) where relative lipid abundances were calculated by relating the area under 

the chromatogram for each lipid species to the corresponding internal standard. Total lipid class 

concentrations were calculated using the sum of individual lipid species within each class. 

Assay performance was monitored by calculating CVs of quality control plasma samples across 
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the entire analytical run. Median CVs of the internal standard areas and plasma quality control 

samples were 6% and 8%, respectively, indicating high precision (< 15%). 

2.2.5. Nomenclature 

 This study uses the lipid naming convention outlined by the Lipid Maps Consortium and 

by Liebisch and colleagues [24, 25]. Lipids containing two fatty acid chains without further 

characterisation are expressed as the sum composition of carbon atoms and double bonds (eg. 

PC (38:6)). Where acyl chains have been determined but the position is unknown, an 

underscore between the acyl chains is used (i.e. PC (38:6) is changed to PC (16:0_22:6)), 

otherwise a forward-slash between acyl-chains is used where their position is known (i.e. PC 

(16:0/22:6)). The same nomenclature is used for other lipid classes and subclasses. Species 

separated chromatographically but incompletely characterised are labelled with an (a) or (b), 

(eg. PC (P-17:0/20:4) (a) and (b)), where (a) and (b) represent the elution order. Some parent 

species which do not have specific sn-1 or sn-2 information are represented as the sum of the 

fatty acids (eg. PI (16:0_20:4) is the combination of PI (16:0/20:4) and PI (20:4/16:0)) [23].  

2.3. Statistical Analyses 

This is a cross-sectional analysis of baseline data from a previous RCT [18] and no formal 

sample size calculation was undertaken for this study. Participant characteristics are reported 

as mean ± standard deviation (SD) or median (interquartile range [IQR]) for non-normally 

distributed variables. Normality was assessed by visual inspection of histograms and using 

Shapiro-Wilk tests, and because lipids have a naturally skewed distribution, quantitative values 

for each lipid species were normalized to the base-10 or to the IQR prior to statistical analyses. 

Univariable and multivariable linear regression models were computed using Matlab R2011a 

(Mathworks, MA, USA) to determine associations between lipid species/classes and the 

outcomes of interest. Predetermined factors known to influence lipids including age, sex, and % 

body fat were included as covariates in the regression models. Relationships between lipid 
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species/classes and each variable are presented as β-coefficients with 95% confidence intervals 

(CIs). β-coefficients represent the change in outcome measure (eg: fasting glucose) associated 

with an IQR increase in the lipid measurement. Unless otherwise specified, all reported p-

values are corrected for multiple comparisons using the Benjamini-Hochberg (BH) method 

[26]. A corrected two-tailed p-value <0.05 was considered statistically significant. 

3.  RESULTS: 

Sixty-five participants (41 males/ 24 females) were included in the study. Demographic, 

anthropometric, clinical, and biochemical characteristics are presented in Table 1. The mean 

age of participants was 31.3 ± 8.5 years and approximately half (n= 35; 53%) were obese (BMI 

≥30 kg/m2). There were no associations between age and any lipid species or classes (all p≥0.05, 

data not shown). Of the 26 lipid classes measured, two sphingolipid classes were associated 

with sex (Table 2), with females having lower concentrations of ceramides and GM3 

gangliosides compared with males (approximately -70% difference in each lipid). 

3.1. Associations between lipids and anthropometric measures: 

In univariable analyses, BMI and WHR were not associated with any lipid species or 

classes (all p≥0.1, Supplemental Material). However, total % body fat was inversely associated 

with ten lipid classes and subclasses including ceramides, monohexosylceramides, GM3 

gangliosides, triacylglycerols (TGs), and lysophosphatidylcholines, as well as the 

phosphatidylethanolamine lipid class and its lyso- and ether-linked derivatives 

(lysophosphatidylethanolamine and alkylphosphatidylethanolamine) and vinyl ether-linked 

plasmalogens (lysoalkenyl- and alkenyl-phosphatidylethanolamine, Table 2).  

In multivariable models adjusted for age and sex, associations between BMI or WHR and 

lipid species or classes remained non-significant (all p>0.05, Supplemental Material). Total % 

body fat remained inversely associated with the phosphatidylethanolamine lipid class in the 
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age- and sex-adjusted model (β [95%CI]= -0.2 [-0.4, -0.1], p=0.03, Table 2), as well as with 

the plasmalogen subclasses lysoalkenylphosphatidylethanolamine (β [95%CI]= -0.04 [-0.1, -

0.02], p=0.04) and alkenylphosphatidylethanolamine (β [95%CI]= -0.5 [-0.7, -0.2], p=0.03, 

Table 2). However, associations between total % body fat and the remaining seven lipid classes 

were attenuated (all p>0.05, Table 2).  

3.2. Associations between lipids and glycaemic measures: 

In univariable analyses, total and second-phase insulin secretion were positively associated 

with the lysophosphatidylinositol (LPI) lipid class after BH correction (β [95%CI]= 781.9 

[353.3, 1210.4], p=0.01 and β=521.3 [240.0, 802.5], p=0.01, respectively, Figure 1, Table 3), 

as well as with the individual species (LPI 18:0, 18:1, 18:2, and 20:4) at both sn-1 and sn-2 

levels before BH correction. First-phase insulin secretion was only associated with the LPI 

lipid class before BH correction for multiple comparisons (β [95%CI]= 150.1 [51.6, 248.7], 

p=0.004), but was no longer significant after correction (p=0.1, Table 3). There were no 

associations between any lipid species or classes and fasting glucose, 2-hour post-OGTT 

glucose, fasting insulin (all p>0.1, Supplemental Material), or insulin sensitivity (Table 3).  

After adjustment for age, sex, and body fat, total and second-phase insulin secretion 

remained positively associated with the LPI class (p=0.02 and p=0.01, respectively; Table 3) 

as well as with the individual LPI species (LPI 18:0, 18:1, 18:2, and 20:4) at both sn-1 and sn-

2 levels, but the latter were only significant before BH correction. First-phase insulin secretion 

was only associated with LPI in the multivariable model before BH correction (β [95%CI]= 

145.1 [45.2, 245.1], p=0.006), but not after correction (p=0.1; Table 3). Associations between 

lipid species or classes and fasting glucose, 2-hour post-OGTT glucose, or fasting insulin 

remained non-significant after adjusting for age, sex, and body fat (all p>0.1, Supplemental 

Material). However, insulin sensitivity became inversely associated with the dihydroceramide 
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lipid class (β [95%CI]= -1.9 [-2.9, -0.9], p=0.01, Table 3) as well as with several DG and TG 

lipid species (Table 4 and Supplemental Material).  

3.3. Associations between lipids and inflammatory markers and adipokines: 

The dihexosylceramide lipid class was positively associated with IL-10 in univariable 

analysis (β [95%CI]= 4.5 [2.0, 6.9], p= 0.02), as well as after adjustment for age, sex, and body 

fat (β [95%CI]= 4.2 [1.8, 6.7], p=0.03, Supplemental Material). There was a positive 

association between the cholesterol ester lipid class and IL-1β (β [95%CI]= 11.9 [4.8, 19.0], 

p=0.046); however this was attenuated after adjustment for the above covariates (p=0.1, 

Supplemental Material). No associations were found between any lipid species or classes and 

other inflammatory markers measured including hsCRP, TNF-α, MCP-1, IL-6, or IL-8 (all 

p≥0.1 before and after adjustment for age, sex, and body fat, Supplemental Material). Similarly, 

leptin, resistin, and adipsin were not associated with any lipid species or classes in both 

univariable and multivariable analyses (all p>0.1, Supplemental Material). Adiponectin was 

inversely associated with four DG and four TG subspecies in univariable analyses; however 

these relationships were attenuated after adjustment for age, sex, and body fat (Table 4). 

4. DISCUSSION 

In a metabolically well-characterised cohort of overweight or obese and otherwise healthy 

individuals, we provide novel evidence that the LPI lipid class is associated with higher insulin 

secretion and may be a potential biomarker for early-stage β-cell dysfunction. We also confirm 

previous studies showing reduced ether phospholipids and plasmalogens in obesity and 

implicating sphingolipids and glycerolipids in the pathogenesis of insulin resistance and 

inflammation. Collectively, our findings suggest that distinct lipid classes present in obesity 

are associated with worse metabolic profiles and that targeting of such lipids could have 

substantial untapped therapeutic potential. 
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Total % body fat was inversely associated with the phosphatidylethanolamine (PE) lipid 

class and its vinyl ether-linked plasmalogen subclasses alkenyl-PE and lysoalkenyl-PE before 

and after adjusting for age and sex. PE is a multifunctional phospholipid and precursor for other 

lipids including phosphatidylcholine. Deficiency in PE impairs oxidative phosphorylation and 

alters mitochondrial function [27], whereas elevated hepatic PE is proposed to have beneficial 

glucose-lowering effects [28]; however, results are conflicting [29]. Similarly, plasmalogens 

exert antioxidant effects via preventing oxidation of cholesterol in phospholipid bilayers and 

regulating cholesterol esterification and efflux [30]. Lower plasmalogens have frequently been 

observed in conditions of elevated oxidative stress, including in obesity as demonstrated here 

and in previous studies [22], as well as in prediabetes and type 2 diabetes [29], cardiovascular 

diseases [31], and Alzheimer’s disease [32]. Large population-based cohorts [22] and smaller 

studies in twins [5], non-diabetic adults [33] and obese women [34] have reported that PEs and 

plasmalogens correlate negatively with BMI [22], body fat by DEXA [5, 33], subcutaneous fat 

by MRI [5], and visceral fat measured by CT [34]. However, some studies did not adjust for 

age or sex, while others did not exclude smoking, comorbidities, or medication use, factors 

which can influence plasma lipidome composition [35, 36]. Indeed, associations between seven 

lipid classes and total % body fat in the present study were attenuated after adjustment for age 

and sex. Our findings strengthen current evidence that obesity, even in the absence of overt 

metabolic disease, is associated with deleterious alterations in lipid metabolism which may 

facilitate oxidative stress and development of type 2 diabetes.  

The novel finding of the present study is the strong independent positive association 

between total and second phase insulin secretion and the LPI lipid class. LPI is a bioactive lipid 

generated by the phospholipase-A (PLA) family of lipases, primarily by PLA2 enzymes. Group 

IV calcium-dependent PLA2 (cPLA2) are the main enzymes responsible for LPI synthesis, 

although the Group VI cytosolic calcium-independent PLA2 (iPLA2) has also been shown to 



13 
 

produce LPI [37]. LPI has been implicated in several biological processes including cell growth, 

differentiation, and motility in various cell-types [38]. Two early studies [7, 39] showed that 

LPI stimulated the release of insulin by rat pancreatic islets, suggesting that LPI may have 

potent insulinotropic effects. In 2007, Oka et al. [40] uncovered the first receptor target for LPI, 

the G protein-coupled receptor-55 (GPR-55), which is present in pancreatic β-cells [38]. 

Several animal models and human cell-culture studies have since reported the potential role of 

LPI in metabolism and glucose homeostasis [41, 42], suggesting that it may influence insulin 

secretion indirectly via GPR-55 activation or directly via inducing intracellular calcium release 

and potentiating ion channels [38]. To our knowledge, no previous studies have demonstrated 

a relationship between LPI and insulin secretory responses in vivo in humans. Existing cross-

sectional studies have only examined insulin secretion in relation to sphingolipids [8, 43], 

namely ceramides, while intervention studies examined insulin secretory responses following 

lipid infusion [44], pharmacotherapy [43], or dietary free fatty acids such as high palmitic or 

oleic acid diets [45]. Here, we present new evidence for an association between LPI and insulin 

secretion in vivo in humans, supporting the possible insulinotropic effects of LPI demonstrated 

in earlier animal models. Elevated LPI may be a novel biomarker for impaired insulin secretion 

and early-stage β-cell dysfunction in obese individuals, and further investigation is warranted. 

Negative associations were observed between insulin sensitivity and the dihydroceramide 

class and several DG and TG glycerolipid subspecies after adjustment for age, sex, and body 

fat. Glycerolipids are proposed to blunt insulin signalling pathways and reduce insulin 

sensitivity by phosphorylating insulin receptor substrate-1 (IRS-1), either directly or via 

activation of the inhibitor of kappa-B kinase (IKKβ) and Jun N-terminal kinase (JNK) [46]. 

Dihydroceramides, the precursors for complex sphingolipids, have been implicated in multiple 

biological processes associated with insulin action including autophagy, apoptosis, 

mitochondrial function, and oxidative stress [47]. Cross-sectional studies using HOMA-IR [4, 
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43, 48-50], Matsuda [4], or insulin sensitivity index [8, 43] have reported contradictory results 

for dihydroceramides [8, 43, 49], muscle DGs and TGs [4, 48], and mono vs linoleic acid TGs 

in serum, respectively [50]. It is posited that specific TG and DG moieties are metabolically 

active or that their actions on muscle insulin resistance are fibre type-specific [9, 50]. In studies 

using hyperinsulinaemic clamps, some report negative associations with dihydroceramides [9] 

or glycerolipids [5], consistent with our study, while others report no association [10, 51], the 

latter likely due to small sample sizes (n<22). We previously reported that insulin sensitivity 

by clamp was negatively associated with TG and DG subspecies, and with ceramides, but not 

dihydroceramides, in obese non-diabetic adults [33]. However, participants were older than in 

the present study (mean age >55 versus 31 years) with potentially greater metabolic 

abnormalities. We speculate that elevated dihydroceramides may indicate an initial 

upregulation of sphingolipid synthesis, after which a shift in sphingolipid metabolism occurs 

leading to greater ceramide accumulation in more insulin resistant states. Indeed, ceramides 

are nearly two-fold higher in patients with type 2 diabetes compared with lean [11, 52] or obese 

controls [8, 10], and higher dihydroceramides in healthy adults predicted a two-fold increased 

risk of diabetes after 3 years [53]. While this is an intriguing hypothesis, there were no 

associations with other sphingolipids in this study (likely due to the small sample size), thus 

further corroborating evidence is needed. Dihydroceramides may represent a marker of early-

stage metabolic dysfunction, yet, whether they can be combined with other biochemical or 

genetic biomarkers to improve risk prediction and prevention of diabetes remains to be 

evaluated. 

We found that dihexosylceramide, a complex glycosphingolipid class, was positively 

associated with the anti-inflammatory cytokine IL-10, independent of age, sex, and body fat. 

Dihexosylceramide mediates cholesterol biosynthesis and is reported to be lower in conditions 

associated with chronic low-grade inflammation including obesity [22], prediabetes, and type 
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2 diabetes [29]. We postulate that dihexosylceramide may function synergistically with IL-10 

to regulate anti-inflammatory responses; however, further investigation is needed to 

corroborate this hypothesis. A positive association between IL-1β and the cholesterol ester 

class was also identified, but was attenuated after adjustment for covariates. Nevertheless, 

animal studies report that cholesterol accumulation in islets leads to macrophage recruitment 

and increased IL-1β expression, as well as defective glucose stimulated insulin secretion [54]. 

Whether dysregulated cholesterol drives 1L-1β secretion and metabolic inflammation awaits 

further study. No associations were found for the other inflammatory markers measured, 

consistent with previous studies reporting no correlations with TNF-α and hsCRP in plasma 

[49] or TNF-α in muscle [13]. However, others report that muscle and plasma ceramides and 

DGs correlate positively with TNF-α [11, 55] and IL-6 [49]. The latter studies were in patients 

with existing diseases including type 2 diabetes [11], sepsis [55], and coronary heart disease 

[49], in whom inflammation is exacerbated. Participants in the present study had relatively 

normal ranges of inflammatory markers which may explain the lack of associations observed.  

Finally, we report inverse associations between adiponectin and several DG and TG 

subspecies, which were attenuated after adjustment for covariates. In experimental and animal 

models, overexpression of adiponectin and its receptors (AdipoR1/R2) enhances lipid 

clearance in liver and adipose tissue, promotes ceramidase activity, and prevents accumulation 

of deleterious lipid metabolites including ceramides and DGs [17]. We previously reported 

inverse associations between adiponectin and similar DG and TG subspecies in non-diabetic 

adults [33], and studies in both adults and children also support the antilipotoxic properties of 

adiponectin [43, 52]. Conversely, no associations were found between leptin, adipsin, or 

resistin and any lipids. Few human lipidomic studies have examined leptin and resistin and, to 

our knowledge, no studies have examined adipsin in relation to the plasma lipidome. In older 

men, leptin was inversely associated with lysophospholipids [56], and both leptin and resistin 
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were inversely associated with plasmalogens in lean non-diabetic adults [57]. Leptin has also 

been shown to stimulate fatty acid oxidation in muscle from lean, but not obese, humans [16], 

suggesting that obesity induces peripheral leptin resistance leading to the accumulation of 

intramuscular lipids and development of insulin resistance [16]. Although we found no 

associations between these adipokines and any lipids, this may be due to the small sample size. 

Further investigation is needed to clarify whether adipokines influence lipidomic pathways and 

their relative contributions to the overall functioning of the lipidome.  

Some limitations of our study should be noted. This was a secondary analysis of baseline 

data from a previous RCT, hence, the study was not powered for lipidomics analyses and our 

sample size may have been too small to detect significant correlations for some variables. The 

false discovery rate of 0.05 may have been too conservative and a more liberal rate may have 

identified additional correlations. As per protocol [18], we studied overweight or obese non-

diabetic adults and our results may not be generalizable to other populations. Future studies are 

needed to validate our findings against other cohorts, including lean individuals. The cross-

sectional design means we cannot establish causality or directions of the relationships observed. 

We also cannot determine temporal changes in lipids which occur as a result of altered diet or 

circadian rhythms. However, our standardized collection of plasma samples in the morning 

after a 12-hr overnight fast from all participants minimizes variation caused by these factors. 

Moreover, lipids were measured in plasma rather than in target tissues and while this provides 

insight into lipid metabolism (predominantly within the liver), it also reflects lipoprotein 

production, circulatory metabolism, and turnover, and results should be interpreted in light of 

this. We addressed this issue to some extent by adjusting for demographic covariates known to 

influence lipoprotein levels, including age, sex, and body fat. TG concentrations were 

measured based on the neutral loss of multiple fatty acids. Hence, some isomeric TG species 

would have been excluded, although we suspect this to be minimal and limited to low abundant 
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species. Finally, grouping the results into lipid classes may lead to over-interpretation of our 

findings since lipid classes consist of several chemical entities with varied and often 

counteracting biological functions, thus results should be interpreted with caution.   

Notwithstanding these limitations, we report the novel finding that LPI was associated 

with insulin secretion in vivo in humans, which has not previously been reported. Our targeted 

lipidomics platform covered >450 species and 26 classes with known identity and quantitative 

measurements, allowing for a comprehensive assessment of the plasma lipidome. We 

employed direct gold-standard measures of obesity, insulin sensitivity, and insulin secretion, 

and rigorous statistical analyses including adjustment for important covariates and 

standardization of each lipid measurement to the interquartile range prior to analysis. Finally, 

our sample comprised a metabolically well-characterized cohort of overweight or obese, 

otherwise healthy adults, where there was no confounding by disease status or use of 

medications, supplements, or substances.  

5.  CONCLUSIONS 

Taken together, our data suggest that distinct lipid classes are associated with poorer 

metabolic profiles in overweight or obese individuals. We hypothesize that these lipids may 

alter signalling or differentiation pathways and ultimately result in type 2 diabetes, a hypothesis 

which needs to be confirmed by large-scale prospective studies. Our novel findings substantiate 

previous animal data and further implicate LPI as a potential culprit in early-stage β-cell 

dysfunction. Similarly, dihydroceramides may indicate an upregulation of sphingolipid 

synthesis at the early stages of metabolic dysfunction prior to disease onset. The newly 

recognised roles of these lipids, if validated in larger studies, could see their introduction as 

biomarkers for identifying high-risk individuals and for developing preventive and therapeutic 

strategies in future. 
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Table 1. Participant Characteristics: 

 

Characteristics Mean ± SD or median (IQR) 

Male, n (%) 41 (63%) 

Age (years) 31.3 ± 8.5 

Body mass index (kg/m2) 30.1 (27.8, 33.3) 

Waist circumference (cm) 101 (96, 108) 

Waist-to-hip-ratio 0.93 ± 0.06 

Total body fat (%) 40.1 ± 8.7 

Fat mass (kg) 36.0 ± 11.0 

Fat-free mass (kg) 53.4 ± 12.4 

Fasting glucose (mmol/L) 4.6 ± 0.5 

2-hour post OGTT glucose (mmol/L) 5.6 ± 1.6 

Fasting insulin (mU/L) 8.9 (6.7, 12.8) 

Insulin sensitivity (M-value; mg/kg/min) 6.6 ± 2.8 

Total insulin AUC (mU/L) 1972.2 ± 1302.1 

First-phase insulin AUC (mU/L) 385.0 ± 291.7 

Second-phase insulin AUC (mU/L) 1303.6 ± 856.8 

High-sensitivity C-reactive protein (mg/L) 1.7 (0.9, 4.4) 

Tumor necrosis factor-α (pg/ml) 32.4 (16.9, 63.5) 

Monocyte chemoattractant protein-1 (pg/ml) 631.6 (425.4, 982.8) 

Interleukin-1β (pg/ml) 21.2 (10.7, 35.9) 

Interleukin-6 (pg/ml) 22.1 (13.1, 44.4) 

Interleukin-8 (pg/ml) 15.7 (9.8, 22.7) 

Interleukin-10 (pg/ml) 8.7 (6.5, 16.3) 

Adiponectin (ng/ml) 4749.4 (2348.1, 11243.4) 

Leptin (ng/ml) 2.8 (1.5, 15.8) 

Resistin (ng/ml) 1058.2 ± 914.7 

Adipsin (ng/ml) 0.4 (0.3, 1.2) 

Data are expressed as mean ± standard deviation, or median (interquartile range) for 

non-normally distributed variables, unless otherwise specified. OGTT, oral glucose 

tolerance test; AUC, area under the curve. 
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Table 2. Associations between lipid classes and sex and total % body fat: 

 

Lipid Class 

Sex*  
 

Total % body fat 

Unadjusted 

β (95% CI) 
P  

Unadjusted 

β (95% CI) 
P 

Adjusted† 

β (95% CI) 
P 

Trihexosylceramide 0.2 (-0.1, 0.5) 0.4  -0.0002 (-0.02, 0.02) 0.9 -0.02 (-0.04, 0.01) 0.4 

Triacylglycerol -4.9 (-8.3, -1.5) 0.06  -0.3 (-0.5, -0.1) 0.02 -0.2 (-0.5, 0.1) 0.3 

Sphingomyelin 0.4 (-0.1, 1.4) 0.7  0.01 (-0.04, 0.01) 0.7 -0.004 (-0. 1, 0.1) 0.9 

Phosphatidylserine 0.1 (-0.7, 0.8) 0.9  -0.01 (-0.1, 0.03) 0.6 -0.05 (-0.1, 0.01) 0.3 

Phosphatidylinositol -0.2 (-1.4, 1.0) 0.8  -0.03 (-0.1, 0.04) 0.4 -0.04 (-0.1, 0.1) 0.6 

Phosphatidylglycerol -0.1 (-0.5, 0.3) 0.7  -0.02 (-0.04, 0.01) 0.3 -0.03 (-0.1, 0.01) 0.2 

Alkenylphosphatidylethanolamine -1.9 (-4.9, 1.1) 0.4  -0.3 (-0.4, -0.1) 0.01 -0.5 (-0.7, -0.2) 0.03 

Alkylphosphatidylethanolamine -0.8 (-2.1, 0.5) 0.4  -0.1 (-0.2, -0.02) 0.04 -0.1 (-0.2, -0.03) 0.08 

Phosphatidylethanolamine -0.5 (-2.3, 1.3) 0.7  -0.1 (-0.2, -0.03) 0.045 -0.2 (-0.4, -0.1) 0.03 

Alkenylphosphatidylcholine -0.5 (-1.8, 0.7) 0.6  -0.01 (-0.2, -0.02) 0.05 -0.1 (-0.2, -0.04) 0.07 

Alkylphosphatidylcholine -0.8 (-1.9, 0.4) 0.4  -0.1 (-0.1, -0.004) 0.1 -0.1 (-0.2, -0.02) 0.2 

Phosphatidylcholine -1.8 (-5.2, 1.5) 0.5  -0.2 (-0.4, -0.03) 0.07 -0.3 (-0.1, 0.01) 0.2 

Monohexosylceramide -0.5 (-0.8, -0.1) 0.1  -0.03 (-0.05, -0.01) 0.02 -0.03 (-0.1, -0.004) 0.1 

Lysophosphatidylinositol -0.4 (-0.9, 0.1) 0.3  -0.02 (-0.05, 0.005) 0.2 -0.004 (-0.05, 0.04) 0.9 

Lysoalkenylphosphatidylethanolamine -0.2 (-0.5, 0.1) 0.4  -0.02 (-0.04, -0.01) 0.02 -0.04 (-0.1, -0.02) 0.04 

Lysophosphatidylethanolamine -0.4 (-1.0, 0.2) 0.4  -0.04 (-0.08, -0.01) 0.04 -0.1 (-0.1, -0.01) 0.09 

Lysoalkenylphosphatidylcholine -0.2 (-0.4, 0.1) 0.4  -0.01 (-0.03, 0.00003) 0.1 -0.02 (-0.04, 0.002) 0.2 

Lysoalkylphosphatidylcholine -0.5 (-0.9, -0.02) 0.2  -0.03 (-0.1, -0.01) 0.05 -0.03 (-0.1, 0.004) 0.3 

Lysophosphatidylcholine -3.1 (-5.4, -0.8) 0.08  -0.2 (-0.3, -0.1) 0.01 -0.2 (-0.4, 0.004) 0.2 

GM3 ganglioside -0.5 (-0.8, -0.3) 0.01  -0.03 (-0.04, -0.02) 0.004 -0.02 (-0.04, 0.01) 0.3 

Dihydroceramide 0.1 (-0.4, 0.6) 0.8  -0.01 (-0.04, 0.02) 0.5 -0.03 (-0.1, 0.01) 0.3 

Dihexosylceramide -0.3 (-0.6, 0.1) 0.3  -0.02 (-0.04, -0.003) 0.07 -0.03 (-0.1, 0.004) 0.3 

Diacylglycerol -5.7 (-9.9, -1.5) 0.08  -0.3 (-0.5, -0.01) 0.06 -0.2 (-0.5, 0.2) 0.2 

Free Cholesterol -0.03 (-0.1, 0.02) 0.4  -0.003 (-0.01, -0.0001) 0.1 -0.003 (0.01, 0.001) 0.6 

Ceramide -0.5 (-0.8, -0.2) 0.04  -0.03 (-0.05, -0.02) 0.006 -0.03 (-0.1, -0.002) 0.2 

Cholesterol ester 0.6 (-0.4, 1.5) 0.4  0.02 (-0.03, 0.1) 0.5 0.01 (-0.1, 0.1) 0.9 

Data presented as β-coefficients and corresponding 95% confidence intervals (CI), with β-coefficients 

representing change in outcome variable associated with an interquartile range increase in lipid class. All lipids 

were log-transformed to the base 10 prior to analyses, and all p-values represent significance of associations 

after correcting for multiple comparisons using the Benjamini-Hochberg method. 

* Males used as the reference group in examining associations between lipids and sex.  
† Multivariable model adjusted for age and sex. 
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Table 3. Univariable and multivariable associations between lipid classes and insulin sensitivity and secretion: 

 

Lipid Class 

Insulin Sensitivity  
 

Total Insulin Secretion  
 

First Phase Insulin Secretion  
 

Second Phase Insulin Secretion 

Unadjusted 

β (95% CI) 

Adjusted* 

β (95% CI) 
 

Unadjusted 

β (95% CI) 

Adjusted* 

β (95% CI) 
 

Unadjusted 

β (95% CI) 

Adjusted* 

β (95% CI) 
 

Unadjusted 

β (95% CI) 

Adjusted* 

β (95% CI) 

Trihexosylceramide 0.8 (-0.1, 1.7) 0.8 (-0.03, 1.7)  -430.5 (-848.6, -12.4) -472.0 (-900.2, -43.7)  -78.6 (-173.3, 16.1) -97.6 (-191.3, -4.0)  -279.7 (-555.1, -4.4) -472.0 (-900.2,-43.7) 

Triacylglycerol -0.4 (-1.4, 0.6) -1.1 (-2.0, -0.1)  459.5 (6.0, 913.0) 529.2 (51.8, 1006.5)  82.8 (-20.0, 185.5) 94.0 (-11.3, 199.4)  327.7 (30.9, 624.4) 529.2 (51.8, 1006.5) 

Sphingomyelin -0.2 (-0.9, 0.6) -0.2 (-0.9, 0.4)  -183.1 (-512.8, 146.7) -166.7 (-494.5, 161.2)  -45.4 (-119.2, 28.3) -42.8 (-114.0, 28.4)  -84.2 (-302.3, 133.8) -166.7 (-494.5, 161.2) 

Phosphatidylserine -0.3 (-1.2, 0.7) -0.6 (-1.5, 0.3)  -116.6 (-562.7, 329.6) -17.9 (-481.1, 445.3)  -40.7 (-140.3, 59.0) -19.1 (-120.0, 81.7)  -19.6 (-313.8, 274.5) -17.9 (-481.1, 445.3) 

Phosphatidylinositol -0.2 (-1.2, 0.9) -0.6 (-1.5, 0.4)  275.8 (-184.0, 735.6) 305.2 (-163.2, 773.7)  46.1 (-57.5, 149.6) 45.5 (-57.3, 148.4)  217.0 (-84.2, 518.1) 305.2 (-163.2, 773.7) 

Phosphatidylglycerol -0.3 (-1.3, 0.7) -0.9 (-1.8, 0.01)  249.9 (-195.6, 695.5) 323.5 (-131.7, 778.8)  73.0 (-26.2, 172.2) 88.3 (-10.0, 186.5)  162.8 (-130.5, 456.0) 323.5 (-131.7, 778.8) 

Alkenylphosphatidylethanolamine 0.1 (-1.0, 1.1) -1.1 (-2.1, -0.2)  -125.8 (-585.8, 334.1) 85.3 (-436.9, 607.5)  -26.8 (-129.9, 76.3) 17.1 (-96.7, 130.9)  -99.2 (-401.6, 203.2) 85.3 (-436.9, 607.5) 

Alkylphosphatidylethanolamine -0.02 (-1.0, 0.9) -0.9 (-1.8, 0.02)  -177.9 (-608.7, 252.8) -10.2 (-483.0, 462.6)  -38.5 (-135.1, 58.0) 0.7 (-102.3, 103.7)  -128.0 (-411.2, 155.1) -10.2 (-483.0, 462.6) 

Phosphatidylethanolamine -0.2 (-1.1, 0.7) -1.0 (-1.8, -0.1)  241.4 (-162.4, 645.1) 392.3 (-32.6, 817.3)  65.4 (-24.6, 155.4) 91.2 (-1.1, 183.4)  154.1 (-111.7, 420.0) 392.3 (-32.6, 817.3) 

Alkenylphosphatidylcholine 0.6 (-0.3, 1.5) -0.1 (-1.0, 0.8)  -136.3 (-571.6, 299.0) -80.0 (-540.8, 380.8)  -23.1 (-120.8, 74.5) -17.9 (-118.3, 82.5)  -121.9 (-407.6, 163.8) -80.0 (-540.8, 380.8) 

Alkylphosphatidylcholine 0.3 (-0.5, 1.2) -0.3 (-1.1, 0.5)  -165.3 (-554.3, 223.7) -84.4 (-495.9, 327.1)  -36.0 (-123.2, 51.1) -18.8 (-108.4, 70.9)  -116.8 (-372.6, 138.9) -84.4 (-495.9, 327.1) 

Phosphatidylcholine -0.1 (-1.2, 0.9) -0.8 (-1.8, 0.2)  274.8 (-206.4, 756.0) 285.4 (-221.9, 792.8)  53.7 (-54.4, 161.8) 44.7 (-66.4, 155.8)  192.3 (-124.0, 508.5) 285.4 (-221.9, 792.8) 

Monohexosylceramide 0.8 (-0.2, 1.8) -0.1 (-1.1, 0.9)  -176.1 (-634.3, 282.2) -144.6 (-664.3, 375.2)  -33.5 (-136.3, 69.3) -25.4 (-138.8, 87.9)  -132.8 (433.9, 168.3) -144.6 (-664.3, 375.2) 

Lysophosphatidylinositol -0.9 (-1.9, 0.1) -1.2 (-2.2, -0.3)  781.9 (353.3, 1210.4) 798.3 (353.7, 1242.9)  150.1 (51.6, 248.7) 145.1 (45.2, 245.1)  521.3 (240.0, 802.5) 798.3 (353.7, 1242.9) 

Lysoalkenylphosphatidylethanolamine 0.1 (-0.9, 1.1) -1.0 (-1.9, 0.02)  -79.6 (-541.5, 382.4) 97.5 (-415.1, 610.2)  -22.1 (-125.5, 81.5) 15.6 (-96.2, 127.3)  -43.8 (-347.9, 260.3) 97.5 (-415.1, 610.2) 

Lysophosphatidylethanolamine 0.5 (-0.4, 1.4) -0.03 (-0.9, 0.8)  15.0 (-403.8, 433.7) 83.8 (-350.6, 518.3)  20.9 (-72.7, 114.6) 33.3 (-61.1, 127.7)  -13.3 (-288.8, 262.2) 83.8 (-350.6, 518.3) 

Lysoalkenylphosphatidylcholine 0.7 (-0.2, 1.6) 0.3 (-0.5, 1.2)  -178.4 (-593.0, 236.3) -189.3 (-618.2, 239.6)  -30.5 (-123.6, 62.6) -35.2 (-128.8, 58.4)  -141.1 (-413.3, 131.1) -189.3 (-618.2, 239.6) 

Lysoalkylphosphatidylcholine 0.4 (-0.6, 1.4) -0.2 (-1.2, 0.7)  -205.5 (-650.0, 239.0) -141.9 (-620.1, 336.4)  -38.3 (-138.1, 61.5) -19.5 (-123.9, 84.9)  -139.3 (-431.7, 153.0) -141.9 (-620.1, 336.4) 

Lysophosphatidylcholine 0.4 (-0.4, 1.2) -0.2 (-1.0, 0.6)  56.6 (-304.7, 417.8) 85.5 (-316.6, 487.5)  15.9 (-65.0, 96.8) 19.3 (-68.3, 106.9)  25.2 (-212.6, 263.0) 85.5 (-316.6, 487.5) 

GM3 ganglioside 0.9 (0.04, 1.8) 0.3 (-0.6, 1.3)  -173.3 (-598.0, 251.4) -258.4 (-751.6, 234.9)  -35.5 (-130.7, 59.7) -56.3 (-163.8, 51.2)  -111.9 (-391.4, 167.6) -258.4 (-751.6, 234.9) 

Dihydroceramide -1.3 (-2.5, -0.1) -1.9 (-2.9, -0.9)  314.4 (-247.9, 876.7) 471.0 (-95.5, 1037.5)  34.3 (-92.6, 161.2) 64.0 (-61.1, 189.1)  264.8 (-103.0, 632.5) 471.0 (-95.5, 1037.5) 

Dihexosylceramide 0.2 (-0.6, 0.9) 0.01 (-0.6, 0.7)  -315.1 (-637.8, 7.6) -331.6 (-652.6, -10.6)  -68.4 (-140.8, 4.1) -74.8 (-144.5, -5.0)  -184.6 (-398.2, 29.0) -331.6 (-652.6, -10.6) 

Diacylglycerol -0.4 (-1.6, 0.7) -1.2 (-2.3, -0.2)  432.3 (-76.4, 940.9) 562.6 (26.6, 1098.5)  70.1 (-45.0, 185.3) 99.0 (-19.2, 217.3)  316.0 (-17.0, 649.0) 562.6 (26.6, 1098.5) 

Free Cholesterol -0.2 (-1.04, 0.6) -0.6 (-1.4, 0.1)  136.7 (-243.0, 516.5) 136.4 (-252.8, 525.6)  15.1 (-70.2, 100.5) 7.3 (-77.8, 92.5)  115.1 (-134.1, 364.4) 136.4 (-252.8, 525.6) 

Ceramide 0.3 (-0.6, 1.2) -0.6 (-1.5, 0.4)  28.4 (-385.3, 442.1) 134.6 (-342.5, 611.7)  7.4 (-85.2, 100.1) 32.9 (-71.0, 136.8)  18.8 (-253.4, 291.0) 134.6 (-342.5, 611.7) 

Cholesterol ester 0.02 (-0.9, 1.0) 0.2 (-0.7, 1.0)  -491.6 (-907.0, -76.1) -516.6 (-934.8, -98.3)  -110.0 (-203.1, -16.9) -120.4 (-210.8, -29.9)  -295.1 (-570.4, -19.8) -516.6 (-934.8, -98.3) 

Data presented as β-coefficients and corresponding 95% confidence intervals (CI), with β-coefficients representing change in outcome variable associated with an interquartile range (IQR) increase 

in lipids. All analyses were conducted with log-IQR transformation to control for skewness of lipids, and all analyses were corrected for multiple comparisons using the Benjamini-Hochberg (BH) 

method. Bold values indicate significance at two-tailed p<0.05 after BH correction.  

*Multivariable models adjusted for age, sex, and total % body fat. 
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Table 4. Univariable and multivariable associations between selected lipid species and insulin sensitivity 

and adiponectin: 

 

Insulin sensitivity 

Selected Lipid Species 
Unadjusted 

β (95% CI) 
P  

Adjusted* 

β (95% CI) 
P 

Cer (d18:0/22:0) -1.3 (-2.4, -0.2) 0.5  -1.9 (-2.9, -1.0) 0.04 

Cer (d18:0/24:0) -1.1 (-2.1, -0.1) 0.5  -1.6 (-2.5, -0.7) 0.04 

DG (16:0_16:0)  -1.7 (-2.8, -0.7) 0.5  -2.0 (-2.9, -1.1) 0.03 

DG (16:0_18:1) -1.0 (-2.1, -0.1) 0.6  -1.7 (-2.6, -0.7) 0.04 

PC (36:0) -1.3 (-2.2, -0.4) 0.5  -1.5 (-2.3, -0.7) 0.04 

TG (48:0) [NL-16:0] -1.4 (-2.4, -0.4) 0.5  -1.6 (-2.5,-0.7) 0.04 

TG (50:0) [NL-18:0] -1.2 (-2.2,-0.1) 0.5  -1.8 (-2.8, -0.8) 0.04 

TG (50:1) [NL-18:1] -1.2 (-2.2, -0.2) 0.5  -1.6 (-2.5, -0.7) 0.04 

TG (52:1) [NL-18:0] -0.9 (-2.0, 0.3) 0.8  -1.9 (-2.9, -0.8) 0.04 

Adiponectin 

Selected Lipid Species 
Unadjusted 

β (95% CI) 
P  

Adjusted* 

β (95% CI) 
P 

DG (14:0_18:2) -7407.6 (-11350.3, -3464.9) 0.04  -6951.4 (-11109.6, -2793.1) 0.1 

DG (16:0_16:0) -9002.6 (-13382.2, -4623.1) 0.03  -8835.2 (-13382.5, -4288.0) 0.1 

DG (18:0_18:1) -7406.2 (-11571.7, -3240.8) 0.04  -7334.2 (-11956.6, -2711.7) 0.1 

DG (18:0_18:2) -8083.8 (-12524.8, -3642.8) 0.04  -7950.1 (-12894.9, -3005.4) 0.1 

PC (18:0_20:3) -7640.6 (-11768.6, -3512.5) 0.04  -7203.0 (-11521.4, -2884.7) 0.1 

TG (50:0) [NL-18:0] -8321.3 (-12704.6, -3938.1) 0.04  -8321.3 (-13081.1, -3561.6) 0.1 

TG (50:1) [NL-14:0] -7889.8 (-12315.7, -3463.9) 0.04  -7752.4 (-12567.7, 2937.1) 0.1 

TG (50:1) [NL-18:1] -7455.2 (-11472.1, -3438.3) 0.04  -7169.4 (-11436.5, -2902.2) 0.1 

TG (50:2) [NL-18:2] -8085.5 (-12012.8, -4158.2) 0.03  -7748.0 (-11856.7, -3639.2) 0.1 

Data presented as β-coefficients and corresponding 95% confidence intervals (CI), with β-coefficients representing 

change in outcome variable associated with an interquartile range (IQR) increase in lipids. All analyses were conducted 

with log-IQR transformation to control for skewness of lipids, and all p-values represent significance of associations after 

correcting for multiple comparisons using the Benjamini-Hochberg method. 

*Multivariable models adjusted for age, sex, and total % body fat. 

Cer, ceramides; DG, diacylglycerol; PC, phosphatidylcholine; TG, triacylglycerol. 
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Figure 1. Associations between the lysophosphatidylinositol (LPI) lipid class and first-

phase (A), second-phase (B), and total (C) insulin secretion. Scatter plots represent raw data 

(uncorrected), where β=change in insulin secretion associated with an interquartile range (IQR) 

increase in LPI. P-values represent significance of associations after correction for multiple 

comparisons using the Benjamini-Hochberg method. AUC, area under the curve. 
 

 


