2 eLife

*For correspondence:
brian.drew@baker.edu.au (BGD);
anna.calkin@baker.edu.au (ACC)

These authors contributed
equally to this work

Competing interest: The authors
declare that no competing
interests exist.

Funding: See page 20

Received: 16 January 2023
Accepted: 15 March 2023
Published: 31 March 2023

Reviewing Editor: David E
James, University of Sydney,
Australia

© Copyright Jurrjens et al. This
article is distributed under the
terms of the Creative Commons
Attribution License, which
permits unrestricted use and
redistribution provided that the
original author and source are
credited.

3

REVIEW ARTICLE

©

The potential of integrating human
and mouse discovery platforms

to advance our understanding of
cardiometabolic diseases

Aaron W Jurrjens'?, Marcus M Seldin®, Corey Giles'*%, Peter J Meikle**,
Brian G Drew"?**!, Anna C Calkin"%***

'Baker Heart and Diabetes Institute, Melbourne, Australia; 2Central Clinical School,
Monash University, Melbourne, Australia; *Department of Biological Chemistry and
Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, United
States; *Baker Department of Cardiometabolic Health, University of Melbourne,
Melbourne, Australia; *Baker Department of Cardiovascular Research Translation and
Implementation, La Trobe University, Bundoora, Australia

Abstract Cardiometabolic diseases encompass a range of interrelated conditions that arise from
underlying metabolic perturbations precipitated by genetic, environmental, and lifestyle factors.
While obesity, dyslipidaemia, smoking, and insulin resistance are major risk factors for cardiomet-
abolic diseases, individuals still present in the absence of such traditional risk factors, making it
difficult to determine those at greatest risk of disease. Thus, it is crucial to elucidate the genetic,
environmental, and molecular underpinnings to better understand, diagnose, and treat cardiomet-
abolic diseases. Much of this information can be garnered using systems genetics, which takes
population-based approaches to investigate how genetic variance contributes to complex traits.
Despite the important advances made by human genome-wide association studies (GWAS) in this
space, corroboration of these findings has been hampered by limitations including the inability to
control environmental influence, limited access to pertinent metabolic tissues, and often, poor clas-
sification of diseases or phenotypes. A complementary approach to human GWAS is the utilisation
of model systems such as genetically diverse mouse panels to study natural genetic and phenotypic
variation in a controlled environment. Here, we review mouse genetic reference panels and the
opportunities they provide for the study of cardiometabolic diseases and related traits. We discuss
how the post-GWAS era has prompted a shift in focus from discovery of novel genetic variants to
understanding gene function. Finally, we highlight key advantages and challenges of integrating
complementary genetic and multi-omics data from human and mouse populations to advance
biological discovery.

Introduction

Cardiometabolic diseases encompass a range of interrelated conditions that develop from underlying
metabolic perturbations precipitated by genetic, environmental, and lifestyle factors. A significant
burden of disease in developed countries is attributable to these conditions including coronary artery
disease (CAD), heart failure (HF), obesity, type 2 diabetes (T2D), and non-alcoholic fatty liver disease
(NAFLD) (Tsao et al., 2022; Younossi et al., 2018). Traditional risk factors that increase an individu-
al’s risk of developing cardiometabolic diseases include obesity, dyslipidaemia, smoking, and insulin
resistance. However, cardiometabolic diseases can manifest in the absence of traditional risk factors,
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highlighting a gap in our understanding of the causative factors that drive disease initiation and
progression. The variable presentation of cardiometabolic diseases is largely due to the complex inter-
action of genetic and environmental factors on subsequent downstream biological pathways. Specifi-
cally, genetics is estimated to explain 40-60% of CAD, 20-70% of NAFLD, and 26% of HF (Sookoian
and Pirola, 2017; McPherson and Tybjaerg-Hansen, 2016; Lindgren et al., 2018). Indeed, a prepon-
derance of loci have been linked with cardiometabolic diseases (Mahajan et al., 2018, Roselli et al.,
2018; Koyama et al., 2020; Erdmann et al., 2018; Fairfield et al., 2022; Atanasovska et al., 2015),
demonstrating the polygenic nature of these conditions. Importantly, many of the genetic mecha-
nisms that drive cardiometabolic diseases are conserved across mammalian species (Li et al., 2020;
Talukdar et al., 2016; Koplev et al., 2022; von Scheidt et al., 2017, Benegiamo et al., 2023). Thus,
model organisms provide an alternate and often complementary approach for exploring novel mech-
anisms that underlie cardiometabolic diseases. Furthermore, model organisms can lend themselves to
complex and/or invasive phenotyping (e.g. tissue collection/biopsy or magnetic resonance imaging)
and interventions (e.g. genetic manipulation or trial drug screens) that cannot readily be undertaken in
humans. They can also be studied across multiple generations, with tight environmental control, and
pertinent tissue samples are readily available for molecular analyses.

In this review, we provide an overview of mouse genetic reference panels and the opportunities
they provide for the study of cardiometabolic diseases and relevant traits, with particular emphasis
on the Hybrid Mouse Diversity Panel (HMDP). We discuss how systems genetics research has shifted
focus in the post-genome-wide assocation study (GWAS) era from discovery of novel genetic variants,
to understanding gene function. In doing so, we highlight the substantial contributions that systems
geneticists have made to advance the field (for comprehensive reviews, readers are directed to Baliga
et al., 2017, Civelek and Lusis, 2014; Li and Auwerx, 2020; Seldin et al., 2019). Furthermore,
we expand upon previous contributions, by discussing some key advantages and challenges of inte-
grating complementary genetic and multi-omics data from human and mouse populations to reveal
novel biological insight, as touched on previously by others (Ashbrook and Lu, 2021; Li and Auwerx,
2020; Nadeau and Auwerx, 2019, Votava and Parks, 2021). We conclude with a discussion of future
considerations for the field.

Systems genetics

Systems genetics is an integrative, population-based methodology that explores the relationship
between genetics and phenotypes, with the goal of understanding how genetic variance impacts
complex traits. Mechanistic links are prioritised by investigating how the abundance of intermediate
phenotypes, such as RNA, proteins, lipids, or other metabolites, co-operate to precipitate complex
traits. As such, genotype serves as a causal anchor to guide analyses of transcriptomics, proteomics,
metabolomics, phenomics, and other omics data to associate with complex traits. By integrating
various layers of omics data, we can construct a comprehensive representation of complex biological
networks in a given cell, tissue, individual, or population, facilitating discovery of novel molecular
targets. These approaches, combined with the continued development of advanced statistical and
algorithmic modelling, enables unprecedented predictive capabilities.

Genome-wide association studies

Over 20 years ago, the Human Genome Project generated the first detailed annotation of the ~3 billion
base pair human DNA sequence (Venter et al., 2001). This seminal advance paved the way for
researchers to leverage genetic information between individuals, to infer causality in phenotype and
disease outcomes. Thereafter, GWAS were spawned, enabling a paradigm shift in our approach to
biological discovery. In essence, GWAS involves the mapping of single nucleotide polymorphisms
(SNPs) across the entire genome and identifying their association with a given trait. A locus that maps
to a specific trait is known as a quantitative trait locus (QTL), where one or more potentially causal
SNPs typically reside. Such traits include, but are not limited to, mRNA expression (eQTL), epigenetic
markers such as DNA methylation (meQTL), the abundance of a protein (pQTL), lipid (IQTL) or metab-
olite (mQTL), or a disease phenotype (pheQTL). Further, eQTLs and pQTLs can be distinguished
by the genomic coordinates of the gene or protein of interest, where QTLs that associate locally
(~1-10 Mb) to the encoded region are referred to as cis (i.e. acting via contiguous genomic struc-
tures), while distal associations are referred to as trans (i.e. acting via distant genomic architecture).
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In the context of germline associations to molecular traits such as expression, DNA plays a regulatory
role in the production of RNA and consequent protein, and therefore, co-mapping of a cis-eQTL with
a given trait infers a potential causal relationship, although experimental validation is usually required
for confirmation of such findings.

Human GWAS have uncovered many genes that contribute to complex diseases including NAFLD
(Anstee et al., 2020), CAD (Deloukas et al., 2013; Nikpay et al., 2015), and obesity (Pulit et al.,
2019). However, despite the potential of this approach, in practice, most GWAS for complex traits
observe associations for common variants with modest effect sizes. Further, failure of loci to be repli-
cated in subsequent studies further complicates interpretation (van der Laan et al., 2015; Siontis
et al., 2010). This is thought to be due, in part, to the large environmental variability, underpowered
study cohorts, complex genetic aetiology, and differences across ethnicities, where allele frequencies
often differ, and where many population-specific SNPs are not present in most standard genotyping
arrays. Furthermore, a major proportion of genome-wide association (GWA) loci for complex traits
reside in non-coding DNA and can exert effects on distant, though related gene networks (Erdmann
et al., 2018; Li et al., 2016). Thus, unravelling the causal mechanisms for robust associations can
prove to be extremely challenging.

It is becoming increasingly evident that the major proportion of complex conditions, including
cardiometabolic diseases, are influenced by hundreds to thousands of subtle genetic variants in
combination (Boyle et al., 2017, Ritchie et al., 2021), indicating their polygenic nature, as opposed
to being driven by a single genetic variant (monogenic). A complementary approach to quantify the
genetic contribution to disease risk is to generate a polygenic score (PGS), which aggregates the
influence of multiple variants to predict an individual’s genetic predisposition for a particular trait or
clinically diagnosed disease, including cardiometabolic diseases such as CAD and NAFLD (Inouye
et al., 2018; Sun et al., 2021; Namjou et al., 2019). Since PGS are able to capture risk that is often
independent of, and thus complementary to, traditional risk factors, they can facilitate additional clin-
ical risk stratification, as has been recently reviewed (Polygenic Risk Score Task Force of the Interna-
tional Common Disease Alliance, 2021). By combining PGS with multi-omics data, such approaches
can provide an investigative resource for the identification of novel diagnostic and therapeutic targets
(Ritchie et al., 2021).

Human genetic and multi-omics resources

Several large-scale human population studies have been undertaken to generate resources
compirising clinical, molecular, genetic, and omics-derived data. A non-exhaustive list of relevant
resources is provided in Table 1. Some studies serve as a resource for parallel analysis of genotype
or multi-tissue gene expression with a compendium of clinical and molecular traits, such as the UK
Biobank or the Genotype-Tissue Expression project (GTEx); others are useful for the study of more
specific traits, such as the Myocardial Applied Genomics Network (MAGNet) for the study of HF,
the Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET) for the study
of atherosclerosis, and the METabolic Syndrome In Man (METSIM) for metabolic phenotypes. Such
resources are cumulative and improve in power as sample size increases. Biological samples can be
stored and later analysed to complement previous datasets and provide additional biological insight.
For example, integration of recent lipidomic analysis of historical plasma samples from ~4500 indi-
viduals from the Busselton Health Study (BHS) identified many loci associated with CAD susceptibility
that co-localised with lipid loci, suggesting shared genetic aetiology (Cadby et al., 2020; Cadby
et al., 2022).

Dissection of the genetic component of disease is, however, further complicated by the vari-
able influence of environmental factors on differing genetic backgrounds, known as gene-by-
environment (GXE) interactions. Even traits that are highly heritable and penetrable, such as
obesity, are amenable to environmental influence and indeed genetic background (Brandkvist
et al., 2020; Abadi et al., 2017), which has historically been difficult to control in humans, though
efforts to collect extensive data on lifestyle and environmental factors are now emerging in the UK
Biobank (Mutz et al., 2021). These challenges have prompted researchers to search for alternative
approaches to minimise environmental influences to more accurately estimate the genetic compo-
nent of a given disease.
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Mouse genetic reference panels

Studying genetically diverse reference populations is a complementary approach to analysing human
genetics, particularly as environment can be tightly controlled, and genetic background can be repli-
cated across cohorts and conditions. Genetic reference panels (GRPs) of model organisms including
worms (Caenorhabditis elegans) (Cook et al., 2017), flies (Drosophila melanogaster) (Mackay et al.,
2012), mice (Bennett et al., 2010), and rats (Tabakoff et al., 2019) are a cornerstone of systems
genetics research and over the past several decades, have yielded considerable biological insight,
underscoring the potential of these approaches to expand our understanding of how genetics influ-
ence biological traits. A key consideration regarding the use of GRPs is the appropriate selection of a
model organism that approximates human health and/or disease (Li et al., 2020; von Scheidt et al.,
2017, Li et al., 2019). Panels of genetically diverse mice have been particularly useful in the study of
cardiometabolic diseases and related traits as they possess many biological similarities to humans. In
this context, valuable resources for linking conserved gene-trait associations with underlying biolog-
ical mechanisms have been provided by mouse GRPs such as the BXD (C57BL/6J x DBA/2J) lines
(Ashbrook et al., 2021), Collaborative Cross (CC) (Churchill et al., 2004), Diversity Outbred (DO)
(Churchill et al., 2012), Um-Het3 (Het3) (Miller and Chrisp, 1999), ILSXISS (Williams et al., 2004),
and HMDP (Bennett et al., 2010). Genetically diverse mouse platforms overcome many of the limita-
tions previously identified with human GWAS. Notably, tissue samples are readily obtainable for
molecular and cellular analyses, while external sources of variation such as diet, co-morbidities, and
environmental conditions can be tightly controlled. Reducing external sources of variation increases
confidence in the identification of phenotypic variation that is attributable to genetics. Notably, the
properties of the various mouse GRPs, as we will discuss, have implications for their application. For
example, inbred mice are deliberately bred to homozygosity at each genetic locus, allowing mice with
isogenic backgrounds to be tested under multiple environmental conditions and thus, relative genetic,
environmental, or GXE quantified directly. On the other hand, outbred mice are heterozygous at most
loci and better represent the genetic architecture of humans and therefore, in some instances, may be
advantageous compared to other panels when mapping highly polygenic traits (Keele, 2023). Alter-
natively, inbred mice can be intercrossed to generate F; hybrid progeny to combine the advantages
of both inbred and outbred panels - reproducibility and heterozygosity, albeit with more breeding
complexity (Ashbrook et al., 2021, Keele, 2023; Threadgill et al., 2002). This breeding strategy can
also be leveraged to cross genetically engineered lines (i.e. transgenic models) onto a diverse genetic
background to confer disease susceptibility (Bennett et al., 2015, Neuner et al., 2019a; Neuner
et al., 2019b). Importantly, the total genetic diversity across strains (i.e. ~71 million segregating SNPs
across 36 inbred mouse strains Doran et al., 2016) is comparable to that which might be observed in
a human population (i.e. ~84.7 million SNPs across 26 human populations Auton et al., 2015).

With the ongoing development of high-throughput sequencing technologies, mouse genomes can
be readily sequenced at high fidelity, and through integration with complementary omics data, regu-
latory loci can be identified with high confidence. Whole genome sequencing is available for all BXD
lines and many CC strains, while SNP array data is available for most inbred mouse panels (Bennett
et al., 2010; Ashbrook et al., 2021; Shorter et al., 2019, Yang et al., 2009). Since the genetics of
inbred mice remain mostly stable over subsequent generations, with the exception of rare sponta-
neous mutations (Ashbrook et al., 2020), genotyping is usually not required for successive studies.
Mouse GRPs can also be subjected to specific environmental ‘perturbations’ such as diet (Parks et al.,
2013), drug treatments (Gatti et al., 2018; Harrill et al., 2009, Pirie et al., 2019), exercise interven-
tions (Moore et al., 2019), or pathological insults that mimic human disease settings (Wang et al.,
2016). Phenotyping undertaken in the absence or presence of such perturbations can be especially
useful in the study of complex diseases sensitive to environmental influence. Meta-analysis of multiple
GRPs can improve association mapping power and resolution and capture GXE interactions (Kang
et al., 2014, Furlotte et al., 2012).

Another application of mouse GRPs is the generation of a mouse cellular GRP, made up of cultured
primary cells derived from GRP strains, which can be leveraged as an ex vivo genetic screen (reviewed
in Swanzey et al., 2021). Cultured cells isolated from many strains of a GRP can be studied in response
to specific treatments to provide detailed insights into gene-by-gene (GxG) or GXE interactions. For
example, cultured islets from ~500 DO mice that were maintained on a high-fat, high-sucrose (HF/HS)
diet for ~22 weeks (Keller et al., 2018) were subsequently investigated for their response to insulin
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secretagogues ex vivo (Keller et al., 2019). This facilitated the identification of genes involved in
the regulation of insulin secretion, several of which were later validated in transgenic mouse models.
A similar approach has been used to identify novel regulators of the insulin secretory response in
pancreatic islets from BXD mice (Berdous et al., 2020) and the acute response to inflammatory stimuli
in primary macrophages from HMDP mice (Orozco et al., 2012).

Current mouse GRPs

Due to the differences in founder strain selection and breeding strategies, the various mouse GRPs
can differ in several aspects including the number of strains, magnitude of genetic diversity, mapping
power, mapping resolution, and strain reproducibility. Of note, parameters such as the power and
resolution of association mapping are dependent on factors such as number of strains, replicates
per strain, and depth of sequencing. Such considerations have been discussed for panels consisting
of inbred, outbred, and F, hybrid mice (Keele, 2023). To date, a comprehensive comparison of rele-
vant factors such as association mapping power and resolution has yet to be undertaken across all
mouse GRPs, but would offer insightful comparisons when considering which panel is most suitable
for a given trait or study. An overview of common mouse GRPs and their application for the study
of cardiometabolic diseases is provided in Table 2. These populations have been subjected to a
variety of conditions across many common diseases and have been extensively reviewed elsewhere
(Ashbrook et al., 2021; Churchill et al., 2012; Collaborative Cross Consortium, 2012; Lusis et al.,
2016), whereas this review will focus on the HMDP, in particular.

BXD

The BXD panel consists of 198 strains of inbred mice derived from C57BL/6J and DBA/2J parental
strains and was initially used to map Mendelian traits upon its inception in the 1970s (Ashbrook et al.,
2021; Taylor et al., 1973; Taylor et al., 1999). BXD mice have been studied for phenotypes relating
to lipid metabolism (Jha et al., 2018b; Jha et al., 2018a), atherosclerosis (Colinayo et al., 2003),
blood pressure (Koutnikova et al., 2009), NAFLD progression (Zhu et al., 2020), and HF (Chen et al.,
2020), among others. There are many advantages to using the BXD panel to map complex traits.
Firstly, BXD mice provide sufficient statistical power for association mapping using limited numbers
of mice due to homozygosity at each locus, increased relative allele frequencies throughout the
population (given that the panel is derived from two founder strains), and fully sequenced genomes
(Ashbrook et al., 2021). Secondly, using updated SNP markers, robustly detectable traits can be
mapped with sufficient resolution using only 60-80 strains, although the inclusion of more strains can
obviously improve mapping resolution further (Ashbrook et al., 2021). In general, increasing the
number of replicate animals within each strain improves statistical power, while increasing the number
of genetically distinct strains refines resolution. Thirdly, the ability to reproduce isogenic strains for
replication across studies has facilitated the accumulation of several thousand classical phenotypes
with >100 omics datasets over the past 50 years (Ashbrook et al., 2021), accessible on GeneNet-
work.org. One recognised limitation of the BXD panel is that it captures a lower proportion of the total
genetic diversity in mice in comparison to more diverse multi-parent populations such as the HMDP,
CC, or the DO (Roberts et al., 2007). Hence, this platform is confined in its capacity to capture poly-
morphisms that are not represented in the two founder strains and may translate to comparatively
reduced phenotypic variation for some traits (Philip et al., 2011).

Collaborative Cross (CC)

The Complex Trait Consortium developed three genetically diverse mouse GRPs in the early 2000s
in an effort to advance systems genetics (Churchill et al., 2004). Firstly, the eight recombinant
inbred founder strains, made up of five common laboratory strains and three wild-derived inbred
strains, capture a significant amount of the genetic diversity observed in mice (Roberts et al., 2007).
Secondly, the founder strains were subsequently combined and inbred to generate ~100 genetically
stable, recombinant inbred lines which make up the CC (Collaborative Cross Consortium, 2012,
Noll et al., 2019). Due to a low survival rate and infertility, the CC was unable to be expanded to
1000 inbred strains as was initially projected. Despite this, the CC is well suited to capture a substan-
tial proportion of the genetic variation that exists in mice, where replication is possible (Keele et al.,
2019). One additional consideration with the limited number of strains available is that association
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mapping resolution and power remains relatively limited, especially for less frequent alleles within the
cross. This panel has been used to map many complex traits related to body composition, exercise
physiology, energy metabolism, and behavioural traits (Philip et al., 2011, McMullan et al., 2018;
Mathes et al., 2011), and inspired the generation of the DO panel.

Diversity Outbred (DO)

The DO is a resource of non-reproducible, genetically unique stocks of mice generated by randomised
outbreeding of incipient CC strains during the early stages of inbreeding (Churchill et al., 2012). A
major advantage of the DO is the extensive diversity of allelic combinations compared with inbred
panels, which can be leveraged to identify susceptible loci with higher resolution mapping capacity,
with a large number of mice (Logan et al., 2013). However, the high allelic diversity and limited pre-
definition of linkage structure also comes with more noise. Consequently, significantly more mice are
required to achieve the same statistical differences using association mapping (linear mixed models
and ‘logarithm of the odds’ scoring) as inbred panels. Studies using the DO have yielded insight into
the genetic architecture of cardiometabolic diseases and related traits such as atherosclerosis, plasma
cholesterol levels, insulin secretion, and diet-induced changes in hepatic mRNA and miRNA expres-
sion (Keller et al., 2018; Keller et al., 2019; Smallwood et al., 2014; Svenson et al., 2012, Coffey
et al.,, 2017; Que et al., 2021). However, since individual DO hybrids are non-reproducible, each
mouse needs to be independently genotyped, and it is not possible to make intra-strain comparisons
across multiple studies.

Um-Het3 (Het3)

The Het3 is a heterozygous mouse population first generated by the Core Facility for Aged Rodents
(CFAR) program and has since been utilised by the National Institute on Ageing (NIA) Interventions
Testing Program (ITP), which aims to identify non-invasive interventions that extend lifespan and
promote healthy ageing (Nadon et al., 2008). The breeding scheme involves a four-way cross between
(BALB/cJ x C57BL6/J) F, females with (C3H/HedJ x DBA/2J) F, males (Miller and Chrisp, 1999). There-
fore, the F, offspring are derived from inbred grandparents with known linkage phase and have rela-
tively large allelic variation. Furthermore, studies conducted by the ITP have been performed at three
separate experimental sites under strict environmental conditions to account for site-to-site variations
(Nadon et al., 2008). The main objective of studies using the Het3 population has been to identify
interventions with robust effects across a range of genetic backgrounds, though this panel has also
been used to map QTLs for various traits (Jackson et al., 1999, Bou Sleiman et al., 2022). Het3 mice
have mostly been utilised for the identification of potential anti-ageing compounds, several of which
(e.g. metformin, rapamycin, acarbose, canagliflozin) were reported to have a favourable impact on
metabolic profile and other cardiometabolic-related traits, though often in a sex-dependent manner
(Zhu et al., 2022; Miller et al., 2014; Herrera et al., 2020; Miller et al., 2020; Snyder et al., 2023).
Other studies have used Het3 mice to study the influence of diet on cardiometabolic-related traits
(Miller et al., 2014; Zheng et al., 2022; Green et al., 2022). Finally, since Het3 mice are genetically
unique, genetic and phenotypic data can be pooled across studies to generate a powerful, cumulative
resource for the genetic dissection of traits (Bou Sleiman et al., 2022).

Hybrid Mouse Diversity Panel (HMDP)

The HMDP consists of 100+ genetically diverse inbred strains of mice that have undergone extensive
genotyping (Bennett et al., 2010; Yang et al., 2009; Ghazalpour et al., 2012). The panel consists
of ~30 classical and 70+ recombinant inbred strains, including many BXD strains, to enhance mapping
power (Lusis et al., 2016). Although mapping resolution is inferior to outbred designs such as the DO,
the HMDP strains are also sufficiently powered to map highly complex traits (Ghazalpour et al., 2012).
One consideration in mapping complex traits using hybrid lines derived from common ancestors lies
in stratification of loci, where spurious genetic associations can, on occasion, be interpreted as causal
due to genetic relatedness. Fortunately, application of linear mixed models can mostly account for this
kinship (often referred to as population structure) and reduce these influences (Sul et al., 2018). The
inbred design comes with the advantage of leveraging strain replicates from association mapping,
which means that substantially less mice are required to achieve the same level of significance. Impor-
tantly, the HMDP is sufficiently powered to detect loci with small effect sizes for a given trait (Bennett
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Figure 1. lllustrative overview of Hybrid Mouse Diversity Panel (HMDP) study designs utilised for the investigation of cardiometabolic diseases and
related traits. Interventions include transgenic expression of the human apolipoprotein (APO)E*3-Leiden and the human cholesteryl ester transferase
protein (CETP) transgenes with concomitant feeding of an atherosclerosis promoting western diet (Ath-HMDP; red) (Bennett et al., 2015), feeding of a
high-fat, high-sucrose diet (HF/HS-HMDP; yellow) (Parks et al., 2013), induction of isoproterenol (iso)-induced HF (HF-HMDP; green) (Rau et al., 2015),
and 30 days of voluntary wheel running (Ex-HMDP; blue) (Moore et al., 2019). Created with BioRender.com.

et al., 2010). This is particularly useful for studying cardiometabolic traits, which are largely polygenic.
Like other inbred mouse panels, data can be compared across generations and between cohorts (Hui
et al., 2018). The HMDP was first studied in 2010, to perform fine mapping of plasma lipids (Bennett
et al., 2010) and has since been used to identify novel loci for blood (Davis et al., 2013; Zhou et al.,
2015), bone (Calabrese et al., 2012; Farber et al., 2011, Hiyari et al., 2015), inflammatory (Pirie
et al., 2019, Orozco et al., 2012; Hiyari et al., 2015; Buscher et al., 2017), auditory (Boussaty et al.,
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2020; Lavinsky et al., 2015; Lavinsky et al., 2016) and behavioural traits (Park et al., 2011) in addi-
tion to cardiometabolic diseases and related traits, which we will focus on in this review (Figure 1).

The HMDP has been studied in a basal setting and following genetic, pharmacological, and lifestyle
interventions, to mimic features of cardiometabolic diseases or healthy interventions as described
below. For example, to explore the genetic regulation of the hepatic and plasma lipidome, Parker
and colleagues integrated genetic data with liver proteomics and lipidomics, as well as plasma lipid-
omics from 107 HMDP strains, in the absence of intervention (Parker et al., 2019). Through a series
of bioinformatic analyses, this resource was leveraged to capture both known and novel targets with
therapeutic potential for the regulation of lipid metabolism, of particular relevance to settings of lipid
dysregulation such as fatty liver disease.

Atherosclerosis phenotypes have also been studied using the HMDP. In this body of work, male
C57BL/6J mice with humanised lipid profiles, via transgenic expression of the human cholesteryl ester
transferase protein (CETP) transgene (Jiang et al., 1992) and the human apolipoprotein (APO)E*3-
Leiden variant (van den Maagdenberg et al., 1993), were interbred with female HMDP mice to
generate a panel of >100 genetically diverse F; hybrid atherosclerosis-prone mice. Hybrid offspring
were subsequently fed a high-fat, high-cholesterol (western) diet for 16 weeks (Ath-HMDP; Figure 1;
Bennett et al., 2015). These studies identified many novel genes mapping to plaque burden and
atherosclerosis-related traits, and have been used as a complementary resource to omics data gener-
ated from human tissues to identify evolutionarily conserved pathways that drive atherosclerosis, and
prioritise high confidence candidates for further investigation (Talukdar et al., 2016; Koplev et al.,
2022; von Scheidt et al., 2017; Cohain et al., 2021; Kessler et al., 2017; Bauer et al., 2022, von
Scheidt et al., 2021; Li et al., 2022).

To explore the genetic architecture of HF, Rau and colleagues treated mice from 105 strains of
the HMDP with isoproterenol for 21 days to mimic features of heart failure (HF-HMDP; Figure 1,
Rau et al., 2015). Further studies have leveraged this platform to provide insights into the genetic
regulation of traits related to cardiac dysfunction including cardiac remodelling (Wang et al., 2016),
hypertrophy (Santolini et al., 2018; Rau et al., 2017, Krishnan et al., 2022), diastolic dysfunction
(Wang et al., 2019; Cao et al., 2022) and altered cardiomyocyte metabolism (Seldin et al., 2017),
and further facilitated the identification of transmembrane glycoprotein NMB (GPNMB) as a potential
plasma biomarker for left ventricular mass (Lin et al., 2018).

HMDP mice have also been subjected to lifestyle interventions such as an 8-week HF/HS diet (HF/
HS-HMDP; Figure 1), alongside chow-fed control mice, to explore the genetic drivers of diet-induced
obesity and gut microbiota (Parks et al., 2013). Subsequent studies have used this platform to eluci-
date genetic mechanisms that regulate hepatic triglyceride (TG) content (Hui et al., 2015), hepatic
lipids (Norheim et al., 2021Norheim et al., 2018), sex- and tissue-specific mechanisms of NAFLD
(Chella Krishnan et al., 2018, Norheim et al., 2021; Parks et al., 2015; Kurt et al., 2018; Norheim
et al., 2017, Chella Krishnan et al., 2021a) and phenotypes linked to adiposity, mitochondrial func-
tion, and insulin resistance (Civelek et al., 2017; Chella Krishnan et al., 2019; Chella Krishnan et al.,
2021b; Schugar et al., 2017).

Finally, the HMDP has been utilised to provide novel insights into the genetic and molecular mech-
anisms underpinning protective metabolic interventions. For example, a 15-strain subset of the HMDP
was subjected to 30 days of voluntary wheel-running (Ex-HMDP; Figure 1) to identify novel mech-
anisms that regulate mitochondrial biogenesis and bioenergetics in skeletal muscle (Moore et al.,
2019). Further analysis of metabolic tissues from these mice could provide valuable insight into the
mechanisms that underlie the complex biological response to exercise, which could be leveraged to
identify novel therapeutic targets for the treatment of cardiometabolic diseases.

Integration of human and mouse data for biological discovery

The development of GRPs in model organisms such as those described above, which have largely
conserved genetics, has proven to be a valuable resource for the identification of genes associated
with complex phenotypes. However, their utility is somewhat confounded by their as yet, mostly
unproven translation to human disease. To this end, the integration of human and mouse genetic data
can provide a novel opportunity for target identification and functional annotation that cannot be
achieved by either method alone. The large sample size of human GWAS provide considerable statis-
tical power, whereas mouse systems offer greater environmental control and provide an opportunity
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to perform detailed phenotyping in relevant disease settings, as well as access to pertinent tissue
samples. When combined, these resources provide an enhanced ability to identify susceptible loci
with human disease relevance and elucidate underlying molecular mechanisms. Importantly, emerging
studies have demonstrated that the genes and gene regulatory networks that modulate biological
processes in mice are largely conserved in humans (Li et al., 2020; Talukdar et al., 2016; Koplev
et al., 2022; von Scheidt et al., 2017; Benegiamo et al., 2023). This cross-species concordance
demonstrates that many of the genetic mechanisms that underlie human disease can indeed be accu-
rately identified using mouse GRPs, confirming that integration of mouse and human data is advan-
tageous in this context.

With thousands of genetic loci having been identified in human GWAS, research has shifted focus
in the post-GWAS era from discovery of novel genetic variants to downstream elucidation of biolog-
ical function. Indeed, genomic tools and experimental approaches can provide functional insight
into genotype-phenotype associations (Gallagher and Chen-Plotkin, 2018). However, the discovery
rate of susceptible loci exceeds the capacity to perform the time-consuming validation experiments
(Stacey et al., 2019). Integrating complementary human and mouse resources can further help to
pinpoint the potential causal genes and offer novel insight into how they cause disease, allowing the
most promising targets to be prioritised for downstream analysis (Figure 2).

It is worth noting that there are some obvious challenges in integrating human and mouse genetic
data. With regard to genetic architecture, mice have 19 pairs of autosomal chromosomes, compared
with 22 in humans. Despite these obvious structural differences, it is clear that many features remain
consistent between genomes, albeit they have been rearranged in large, conserved regions, known
as synteny blocks, reflecting divergence of human and mouse lineages ~75 million years ago (Nadeau
and Taylor, 1984; Waterston et al., 2002). Human and mouse genomes each contain ~30,000
protein-coding genes (Waterston et al., 2002). Approximately 80% of mouse genes can be mapped
to a single orthologous gene (i.e. 1:1 orthologues) within the human genome and >99% map to one
or more orthologous genes (Waterston et al., 2002). Hence, ~19% of mouse genes contain more
than one orthologue due to lineage-specific duplication events. Such is the case for ApoE, of which
three isoforms (ApoE2, ApoE3, and ApoE4) exist in humans, while only a single ApoE isoform exists in
mice (Getz and Reardon, 2016). The resulting isoforms are structurally and functionally distinct and
thus have different effects on lipoprotein metabolism, and indeed disease (Davignon et al., 1999).
A major challenge that remains is identifying the proportion of genes that are functional orthologues
(i.e. those that translate into a protein with a similar structure and biological function). Furthermore,
the relative contribution of a gene, gene network, or molecular pathway to a disease will often vary
with respect to disease severity. Thus, an important consideration is the use of appropriate preclinical
disease models that exhibit clinically relevant features with appropriate severity. A major challenge
here is that it is often difficult to accurately quantify the progression of complex diseases, where
multiple insults and indeed molecular pathways can contribute to disease pathology. Such is the
case for NAFLD/NASH, where the current paradigm suggests that multiple ‘hits’ (i.e. insulin resis-
tance, hepatic lipid accumulation, inflammation, etc.) are required for disease progression in genet-
ically predisposed individuals (Buzzetti et al., 2016). While liver biopsy or MRI provide a surrogate
measure of NAFLD/NASH, bona fide, reliable biomarkers are still mostly lacking, leading to inconsis-
tent phenotyping between individuals and indeed across different experimental settings, hampering
cross-species integration.

Numerous efforts have been made to integrate datasets obtained from human and mouse popula-
tions to elucidate drivers of cardiometabolic diseases (Table 3). These include studies that have mined
publicly available human or mouse databases to derive additional insight into specific targets (Parker
et al., 2019; Kessler et al., 2017, Lin et al., 2018). A handful of recent studies have performed
more extensive integration of genetic and multi-omics data from human and mouse populations
(von Scheidt et al., 2017, Hui et al., 2018; Bauer et al., 2022; von Scheidt et al., 2021), yielding
important insights that were not able to be obtained through either method in isolation, as discussed
in more detail in the following section. Developing a comprehensive understanding of the genetic
architecture of cardiometabolic diseases is fundamental to the selection of candidate therapeutic
targets. This is underscored by recent evidence indicating that selecting therapeutic targets in humans
that have evidence of genetic linkage with the disease under investigation more than doubles the
success rate of drugs that enter the clinical pipeline (Nelson et al., 2015; King et al., 2019). Clinical
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Figure 2. Benefits of integrating human and mouse datasets for biological discovery. Created with BioRender.com.

translation has likely been hampered by the

fact that preclinical studies are often performed in only a

single strain of mice, commonly C57BL/6J in the context of metabolic studies, which is not reflective
of the genetic and phenotypic heterogeneity of a human population. For example, while most strains
(including C57BL/6J) exhibit metabolic dysfunction in response to high-fat diet feeding, albeit with
varying magnitude, certain strains are protected from diet-induced insulin resistance (i.e. BALB/c,

WSB/EiJ and CAST/EiJ), hepatic fibrosis (i.e.

CAST/EiJ), or weight gain (i.e. A/J, WSB/EiJ and CAST/

EiJ), while others (i.e. PWK/PhJ) are more susceptible (Montgomery et al., 2013, Bachmann et al.,
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Cross-species conserved QTL(s), Gene(s),
PROTEIN(S), or networks with trait of
interest

Experimentally validated
Gene(s)/PROTEIN(S)

*Reference

Human-to-mouse
integration

Atherosclerosis/CAD

PVRL2 (NECTIN-2/CD112)

Bennett et al., 2015

Atherosclerosis/CAD

12 gene networks

AIP, DRAP1, POLR2I, POBP1

Talukdar et al., 2016

Atherosclerosis/CAD and plasma lipids

66 genes in aorta and 27 in liver for
atherosclerosis
151 genes in liver for plasma lipids

von Scheidt et al., 2017

Biomarker for atherosclerosis/CAD GUCY1A3 GUCY1A3 Kessler et al., 2017
Glucose and lipids in atherosclerosis/CAD Glucose and lipid determining gene network LSS Cohain et al., 2021
Atherosclerosis/CAD and cholesterol liver MAFF MAFF von Scheidt et al,, 2021

networks

Cross-tissue endocrine factors regulating
CAD gene networks

42 endocrine factors

EPDR1, FCNZ2, FSTL3, LBP

Koplev et al., 2022

Atherosclerosis/CAD

55 genes conserved for atherosclerosis; 14

conserved for other cardiovascular-related traits

RGS19, KPTN

Li et al., 2022

Atherosclerosis/CAD and cholesterol liver
networks

Liver subnetwork consisting of 50 genes,
including the key driver gene, ATF3

ATF3

Bauer et al., 2022

Mouse-to-human
integration

Blood pressure

Ubp1

Koutnikova et al., 2009

Diabetes-related traits

Syntenic regions identified for 49 QTLs for gene

modules and physiological traits

Keller et al., 2018

Cross-tissue endocrine interactions
regulating whole-body metabolism

Len5/LCNé6, Notum

Len5/LCNé, Notum, SMOCT,
ITIHS5, PPBP

Seldin et al., 2018

Biomarker for heart failure

GPNMB

Lin et al., 2018

Hepatic fibrosis

Nine conserved pathways

Hui et al., 2018

Hepatic and plasma lipidome

PSMD?9

Psmd9

Parker et al., 2019

Exercise metabolism

Dnm1l

Dnm1/

Moore et al., 2019

Diabetes-related traits

Hunk, Zfp148 (others not reported)

Ptpn18, Hunk, Zfp148

Keller et al., 2019

Cholesterol metabolism 54 genes Sesn1 Li et al., 2020
Chella Krishnan et al.,
NASH/NAFLD L-PK (Pkin) L-PK (Pkin 2021a
Up to 42% or 35% overlap of upregulated or
NASH downregulated genes in NASH, dependingon - Benegiamo et al., 2023

mouse strain

*For brevity, a selection of key references are provided in this table. We apologise to the investigators whose work could not be cited due to space limitations.

NAFLD = non-alcoholic fatty liver disease. NASH = non-alcoholic steatohepatitis. CAD = coronary artery disease.

2022; Benegiamo et al., 2023). Furthermore, an increase in energy expenditure was observed in
response to a protein-restricted diet in male and female C57BL/6J mice, but not in DBA/2J or Het3
mice (Green et al., 2022). These findings highlight the value of engaging GRPs with substantial
genetic diversity for therapeutic discovery and validation, as they test targeted responses to a given
intervention in multiple diverse strains, as opposed to the response in just one genetic background.
Thus, when deciding on strain selection for a given discovery or validation study, especially when the
trait under investigation has a polygenic architecture, it may be beneficial to include multiple strains,
within logistical constraints, with as much genetic and relevant phenotypic diversity as possible.

Leveraging human-to-mouse integration for biological validation and
mechanistic insight

Loci identified in human GWAS can contain many genetic variants in linkage disequilibrium and it
can therefore be challenging to pinpoint the causal SNP that is responsible for variation of a given
phenotype. Overlaying gene expression data from human samples can facilitate the identification of
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candidate genes by identifying potential cis-eQTLs that co-map with a trait of interest. However, there
is often limited access to the relevant human tissues, and the diverse conditions under which human
tissue is collected can influence the quality of downstream eQTL data (Votava and Parks, 2021).
These limitations can be circumvented by combining human GWAS loci with genetic mapping data
obtained from mouse GRPs. For example, SNPs such as rs2075650 near APOE and APOC1 in humans,
genes that have well established roles in lipid metabolism and atherosclerosis, have been associated
with CAD risk (Deloukas et al., 2013). A significant correlation between aortic root lesion area and
the expression of poliovirus receptor related 2 (Pvrl2, also known as Nectin-2 or Cd112) was identified
across the Ath-HMDP in both the aorta and liver. This gene is found in the same locus as APOE and
APOCT1 and was speculated to partly mediate the effect of rs2075650 (Bennett et al., 2015). Thus,
cross-species interrogation can be useful for pinpointing candidate genes that contribute to polygenic
diseases.

Polygenic diseases are often influenced by the interaction of gene networks within and between
multiple tissues. Network modelling approaches can assist in elucidating the genetic circuits within
one or multiple tissues that drive biological or pathological processes. One such approach is
weighted gene co-expression network analysis (WGCNA), a global expression analysis tool devel-
oped by Zhang and Horvath, 2005, that aims to identify modules of co-expressed genes. Modules
can subsequently be tested for association with a trait of interest, thereby allowing annotation
of gene networks that are enriched for a given phenotype or in a disease setting (Chen et al.,
2008; Lusis et al., 2008). Using this approach, Talukdar and colleagues integrated gene expression
from seven tissues obtained from individuals with late-stage CAD from the Stockholm Atheroscle-
rosis Gene Expression (STAGE) cohort, to construct tissue-specific and cross-tissue co-expression
modules for CAD phenotypes (Talukdar et al., 2016). This led to the identification of 30 ‘CAD-
causal’ modules consisting of genes which contained either a cis-eQTL or had previously been
reported in human CAD GWAS. Integration with phenomic and multi-tissue global gene expression
data from 105 strains of mice from the Ath-HMDP revealed that 46% of the CAD-causal modules
were associated with phenotypes related to atherosclerosis in mice. Among these, they identi-
fied one tissue-specific regulated gene network in aorta, containing 109 genes, that was enriched
2.5-fold in association with lesion size across the Ath-HMDP. Using the key driver analysis (KDA)
algorithm, this network was shown to be regulated by seven key driver genes, or ‘hub genes’. Such
genes are central to the regulation of entire gene networks and thus would be obvious candidates
for therapeutic intervention due to the widespread impact that would likely result from their manip-
ulation. Indeed, independent small interfering RNA knockdown of four key driver genes activated
other genes within the network and modulated THP-1 foam cell formation, validating their involve-
ment in the regulation of atherosclerosis.

SNPs in genes that regulate lipid and glucose pathways can contribute to atherosclerosis suscepti-
bility (Bjérkegren and Lusis, 2022). To explore gene regulatory networks related to lipid and glucose
traits in CAD, Cohain and colleagues performed differential expression analysis followed by co-ex-
pression analysis on gene expression data from seven tissues from the STARNET study (Cohain et al.,
2021). One such module, termed the glucose and lipid determining module (GLD), was negatively
associated with cholesterol traits and positively associated with glucose traits. Furthermore, the asso-
ciation between the GLD co-expression module and glucose and lipid traits was replicated in two
independent human cohorts and in mice from the HMDP and the Ath-HMDP. Four key driver genes
were identified, all of which are known regulators of cholesterol biosynthesis. Notably, the ability to
reconstruct the GLD module across several independent human and mouse cohorts provides a clear
indication that this module and the four predicted key drivers are evolutionarily conserved mediators
of glucose and cholesterol metabolism.

In a separate study, Chella Krishnan and colleagues demonstrated that adipose mitochondrial
oxidative phosphorylation (OXPHOS) genes were elevated in female mice across the HF/HS-HMDP in
a tissue-specific and sexually dimorphic manner. This effect was conserved across the human STARNET
and GTEx cohorts (Chella Krishnan et al., 2021b). An association was also observed between mito-
chondrial DNA levels and metabolic traits such as body weight and insulin resistance across the
HF/HS-HMDP that was conserved across the human METSIM cohort. Association mapping of the
HF/HS-HMDP led to the identification of a female-specific trans-eQTL regulated by NADH:ubiqui-
none oxidoreductase core subunit V2 (Ndufv2) that controlled the expression of 89 genes, of which
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approximately one third were OXPHOS genes. Subsequent validation experiments confirmed a causal
role for Ndufv2 in the sex-specific regulation of obesity via alterations in mitochondrial function.
Mouse and human data can also be integrated by mapping synteny blocks between genomes. For
example, in ~500 HF/HS-fed DO mice, Keller and colleagues identified genetic variants in pancre-
atic islets associated with diabetes-related traits in vivo, including plasma insulin and glucose levels
following fasting, or in response to an oral glucose tolerance test (Keller et al., 2018), and in cultured
islets treated ex vivo with insulin secretagogues (Keller et al., 2019), as previously mentioned. In
each study, QTL mapping was performed for in vivo and ex vivo traits and syntenic regions in mice
were mapped to the human genome and compared with human SNPs related to type 1 diabetes and
T2D to identify conserved diabetes-associated variants. The authors observed that syntenic regions
containing mouse in vivo and ex vivo QTL were significantly enriched with diabetes-related SNPs in
humans, with over half of the ex vivo QTL mapping to one or more diabetes-related traits in humans.

Leveraging mouse-to-human integration for improved clinical relevance
and translation
Human datasets can be used to validate findings from mouse discovery datasets. For example, using
the HMDP, proteasome 26S subunit, non-ATPase 9 (PSMD9) was identified and experimentally vali-
dated as a novel regulator of hepatic and plasma TG and diglyceride (DG) abundance (Parker et al.,
2019). These findings were complemented by analysis using S-PrediXcan (Barbeira et al., 2018), in
which hepatic PSMD9 expression was associated with several readouts of adiposity in the UK Biobank.
Further supporting this, a small GWAS linked PSMD? to obesity and T2D (Gragnoli and Cronsell,
2007; Gragnoli, 2010; Gragnoli, 2013). These studies thus provided support for PSMD9 as a bona
fide regulator of lipid metabolism in mice and humans and suggested that this protein could be
a potential target of interest for clinical obesity and hepatosteatosis. Similarly, Lin and colleagues
performed a mouse discovery analysis in the setting of HF, in isoproterenol-treated mice from 91
strains of the HF-HMDP (Lin et al., 2018). They complemented their findings by overlaying human
cardiac transcriptomic data, which demonstrated that Gpnmb was significantly upregulated in the
setting of HF in the MAGNet consortium, similar to the effect observed in HF-HMDP mice. Further-
more, cardiac GPNMB protein expression was increased in two separate murine models of HF, whilst
plasma GPNMB abundance was reciprocally attenuated in the setting of HF in humans and mice,
suggesting that plasma GPNMB may possess diagnostic or prognostic utility as a biomarker for HF.
The above studies performed ‘look-up’ type integration, with specific outcomes being tested for
association. However, more non-directed approaches may provide broader utility in identifying novel,
evolutionarily conserved drivers of complex disease. Indeed, in a recent study, Li and colleagues
performed WGCNA using liver expression data obtained from the HMDP and DO mouse populations
to construct mouse liver co-expression modules (Li et al., 2020). The enrichment of genes for the
‘cholesterol biosynthetic process’ Gene Ontology term identified a cholesterol module of 2435 genes,
of which 112 consistently replicated across datasets. They next integrated the 112 genes with SNPs
for plasma total cholesterol, low-density lipoprotein (LDL)-cholesterol, high-density lipoprotein (HDL)-
cholesterol, and TG levels from the Global Lipid Genetics Consortium human GWAS, which prioritised
a subset of 48 autosomal genes, 25 of which were novel, that were below the genome-wide and
sub-threshold significance. Of the 25 prioritised genes, many corresponding loci were replicated in
association with plasma lipid traits across the Million Veteran Program (MVP) and UK Biobank human
lipid GWAS datasets.

Non-directed integration of human and mouse data: moving beyond
GWAS

With regard to non-directed integration of data obtained from human and mouse populations, von
Scheidt and colleagues comprehensively explored the literature and catalogued all the genes from
experimental mouse models that significantly altered lesion size or plaque stability (827 genes
from over 9000 publications) and compared them with orthologous human GWAS-derived genes
for CAD (244 genes from 169 significant and suggestive GWAS loci). They demonstrated that
only 46 orthologous GWAS-derived genes had been studied in mice, 45 of which significantly
impacted atherosclerosis (von Scheidt et al., 2017). Furthermore, pathway enrichment analysis
for gene sets in the human GWAS and the gene set of 827 mouse atherosclerosis genes revealed
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that over 50% of the enriched CAD pathways were concordant between mice and humans. The
authors also examined the variation in lesion size across the Ath-HMDP and found that, of the 244
human GWAS-derived CAD genes, the expression of 66 (27%) orthologous genes in the aorta and
27 (11%) genes in the liver correlated with lesion size. It is noteworthy that this may indeed under-
estimate the cross-species concordance by ignoring the contribution, albeit presumably minor, of
extra-aortic and extra-hepatic genes that potentially associate with lesion size. By overlaying two
human lipid GWAS (274 genes) with plasma lipids from the Ath-HMDP they demonstrated that the
expression of 151 of 274 (55%) mouse orthologous genes in liver and adipose tissue correlated
with plasma lipids across strains. This study demonstrates that there is substantial conservation of
genetic mechanisms and biological pathways that influence atherosclerosis in mice and humans
and provides a rich resource of cross-species conserved genes for further analysis. For example,
in follow-up studies, the 244 human GWAS-derived CAD genes and 827 mouse atherosclerosis
genes were mapped to Bayesian networks constructed using human and mouse genetic and gene
expression data (Bauer et al., 2022; von Scheidt et al., 2021). Through investigating gene regu-
latory networks in atherosclerosis, these studies predicted MAFF/Maff and ATF3/Atf3 to orches-
trate a liver network enriched in genes linked to atherosclerosis. Bioinformatic analysis of liver
gene expression data from STARNET and multiple HMDP cohorts indicated a potential role for
MAFF/Maff and ATF3/Atf3 in the context-specific regulation of lipid and lipoprotein metabolism
via the low-density lipoprotein receptor (LDLR/LdIr). These findings were validated in silico and in
vitro, suggesting that MAFF/Maff and ATF3/Atf3 regulate lipid metabolism and atherosclerosis in
an inflammation-dependent manner.

Hui and colleagues combined GWAS analysis with liver transcriptomic data from 102 strains of
the Ath-HMDP to identify genetic loci that contribute to hepatic fibrosis, a key feature of NASH (Hui
et al., 2018). This led to the identification of several cis-eQTLs, including those for phosphatase
and actin regulator 2 (Phactr2) and eukaryotic translation initiation factor 3 subunit H (Eif3h), the
gene expression of which significantly correlated with liver fibrosis. In subsequent analyses, mouse
hepatic gene expression data was compared to gene expression in liver explants of 68 individuals
undergoing bariatric surgery, including a subset of individuals with histologically diagnosed NASH
(Leén-Mimila et al., 2015). Using marker set enrichment analysis to identify GWAS signals that were
overrepresented among eQTLs mapped to individual pathways, a 60% overlap between mouse and
human NASH sub-networks was identified. Specifically, they identified nine pathways that were shared
between mouse and human (e.g. innate and adaptive immune system), in addition to six mouse-
specific (e.g. fatty acid, TG, and ketone body metabolism) and twelve human-specific (e.g. cytokine
signalling) pathways. Collectively, these studies provide evidence that combining data obtained from
mouse GRPs with data obtained from humans can assist in elucidating conserved disease-associated
pathways, which have practical implications for downstream analyses. Although we are yet to see the
full potential of this approach, these efforts have provided unique insight into the conservation of
genes and molecular processes that confer disease susceptibility.

Validation studies in systems genetics research

An important aspect of systems genetics is the validation of candidate targets to establish causality.
Indeed, statistical causal inference techniques such as cis-expression correlation or mediation anal-
ysis are useful in prioritising the gene(s) that are likely to be causally associated with a given SNP.
However, if phenotypic components themselves are tightly correlated, as is often the case for func-
tionally related genes, proteins, and lipid species, this can inflate mediation statistics and increase the
rate of false positives. Despite advances in statistical network modelling approaches such as WGCNA
or Bayesian networking and its derivative KDA algorithm, these approaches are prone to false positive
relationships due to inherent limitations in the modelling of complex and dynamic biological systems,
or simply the result of bystander genes. Integrative approaches that combine the advantages of both
human and mouse datasets to assign priority to the most promising candidate genes can help reduce
the rate of false positive associations. However, this does not obviate the requirement for validation
experiments to establish causality and confirm directionality. Further mechanistic insights can also be
obtained either in the absence of tissue crosstalk using in vitro experimentation, or in the presence
of multi-cellular and multi-organ crosstalk using in vivo studies, which are more representative of a
biological system.
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For example, upon identifying an association between PSMD9 and acylglycerol species in liver
and plasma across HMDP mice, Parker et al. utilised loss- and gain-of-function experiments to further
elucidate the role of PSMD9 in the context of lipid regulation in vivo (Parker et al., 2019). In two
distinct strains of mice, C57BL/6J and DBA/2J, adenoviral overexpression of PSMD9 for 5-7 days
promoted the accrual of DG and TG species in mice fed a chow diet. Strikingly, in mice fed a western
diet for 28 days to promote hepatic lipid accrual, PSMD9-antisense oligonucleotide treatment was
associated with a significant attenuation of hepatic and plasma TG and DG levels in DBA/2J mice, and
to a lesser extent in C57BL/6J mice. Indeed, the phenotypic outcome resulting from modulation of
a gene is highly dependent on genetic background, as others have previously demonstrated (Sittig
et al., 2016). This strain-specific effect is representative of the variable influence that modulation of
a single gene would have on a complex trait in a human population and underscores the importance
of performing experimental validation in multiple strains with differing genetic backgrounds, where
possible.

Cardiometabolic diseases are greatly influenced by biological sex. This highlights the importance
of incorporating both sexes in validation experiments, where possible, in line with efforts to promote
inclusion of females in preclinical research (Clayton and Collins, 2014; Heidari et al., 2016). Some
studies have addressed this by performing validation studies in male and female mice (Moore et al.,
2019, Schugar et al., 2017), while others have validated findings in ovariectomised and/or gonadec-
tomised mice to explore how sex hormones regulate complex traits and disease (Parks et al., 2015;
Chella Krishnan et al., 2021b; Norheim et al., 2019). For example, this approach revealed that sex
hormones regulate key sex- and tissue-specific pathways in NAFLD (Kurt et al., 2018). Inclusion of
sex as a biological variable in validation studies improves the applicability of findings and can, to an
extent, facilitate personalised management strategies.

With thousands of loci having been identified for complex diseases, a remaining challenge is the
prioritisation of high-confidence genes with therapeutic potential. For example, as mentioned above,
Li and colleagues integrated mouse liver gene expression networks with data from a human lipid
GWAS. This led to the identification of 25 novel genes implicated in cholesterol metabolism (Li et al.,
2020). Using a variety of functional experiments to filter the genes, they demonstrated that hepatic
expression of many of these genes was modulated in response to diets that modulate hepatic choles-
terol levels, or in response to cholesterol depletion in mouse liver cells. Furthermore, silencing of
10 of the 25 genes altered the expression of the regulator of cholesterol synthesis, hydroxymeth-
ylglutaryl-CoA synthase (Hmgcs), in mouse liver cells. This led to the identification of several high-
confidence, cross-species conserved, cholesterol regulating genes, such as sestrin1 (Sesn1), which
was functionally characterised to play a role in cholesterol biosynthesis using in vivo and in vitro
systems. This is an elegant example of how systematic, data-driven validation studies can be used to
assign priority to candidate genes and provide insight into the molecular mechanism of a gene under
investigation.

Conclusions

Although the ability of human GWAS to consistently identify the causal gene(s) within a given locus
for complex traits has been impeded by numerous logistical challenges, such methodologies have
pioneered the gene discovery revolution and have been the springboard to contemporary genetic
analytical approaches. As a complementary approach to GWAS in humans, GRPs in model organisms
such as mice have also been vastly informative. As stand-alone methods, both human and mouse
GWAS have been successful in their own right at identifying causal genetic variants, however their
integration stands to elevate their individual successes. We have highlighted here the many poten-
tial advantages of comparing, overlaying, and integrating complementary datasets between mice
and humans to improve these outcomes. Indeed, more extensive integration of data from human
and mouse populations can be leveraged to maximise biological discovery and clinical translation.
However, more work is necessary to advance this knowledge towards prognostic, diagnostic, and
therapeutic outcomes.

Future considerations
As the field of systems genetics rapidly progresses, there are several important points to consider in
order to harness the full potential of existing and emerging resources and maximise clinical impact.
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In order to comprehensively and accurately integrate datasets from human and mouse populations,
a number of key areas must be addressed. Firstly, future studies must address the lack of consis-
tency in phenotyping complex traits across species. Secondly, cross-species genetic maps need
to be streamlined and require improved annotation of functional orthologues, so that more direct
comparisons can be made between model systems and human biology. Thirdly, the development of
user-friendly webservers with gene-, SNP-, or phenotype-lookup functions, such as GeneNetwork.org
(Williams and Mulligan, 2012), Starnet.mssm.edu (Koplev et al., 2022), CoffeeProt.com (Molendijk
et al., 2021) the METSIM metabolomics PheWeb (Pheweb.org/metsim-metab) (Yin et al., 2022),
or Institutional Specific Portals (i.e. Baker Institute Lipidomics PheWeb; Metabolomics.baker.edu.au)
(Cadby et al., 2022) would be useful for those who lack the statistical or computational expertise to
analyse complex datasets, providing the broader scientific community access to such datasets and
the opportunity to incorporate systems genetics data into their research. Lastly, while genomic tools
and complementary human and mouse populations serve as useful sources of biological validation
and mechanistic insight, these should be viewed as an accompaniment, rather than a replacement
for laboratory-based experimental validation. Indeed, we emphasise the importance of performing
validation experiments in both sexes and across multiple genetic backgrounds, where possible, to
improve the biological relevance and translation of findings. Addressing these factors will facilitate
accurate and comprehensive integration of multi-omics datasets across species and enhance biolog-
ical discovery and importantly, clinical translation.

With the systems genetics field now at a major crossroads on how to best leverage contemporary
methodologies including PGS and Mendelian randomisation, several questions remain that will ulti-
mately influence the direction taken in years to come. The full potential of cross-species data integra-
tion remains to be seen, with the field continuing to evolve with regard to greater depth of sample
analyses, larger cohort numbers, and high-throughput analytical approaches being developed. So,
what is needed from existing infrastructure to convince both clinical and discovery scientists that
genetic information is a powerful complementary tool to guide discovery and therapeutic transla-
tion? Do we need to integrate genetic information from multiple ethnicities, in larger numbers and
continue to push the boundaries in computational science? Although identifying disease-associated
variants is undoubtedly important, should we place more emphasis on overlaying multiple biological
layers such as the abundance of genes, proteins, and other intermediate metabolites to improve our
confidence in the most likely causal gene(s) and underlying biology? What does full integration of
human and mouse data look like and how far should this be pursued? Can we perform cross-species
meta-analysis to generate more precise and powerful comparisons? Can we develop an approach
to comprehensively define functional orthology across species to facilitate biological interpretation
between humans and mice? Whatever the answers may be, the field must work through these chal-
lenges in a systematic and collaborative manner. Undoubtedly, these approaches, combined with
addressing the abovementioned limitations, are likely to provide unique opportunities for discovery
and clinical translation to improve human health and pave the way for a new direction for the field of
systems genetics, greatly facilitating progress towards precision medicine.
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